-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels_dmjd.py
403 lines (336 loc) · 18.4 KB
/
models_dmjd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright (c) 2022 Alpha-VL
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# ConvMAE: https://github.com/Alpha-VL/ConvMAE
# RelPosViT: timm/models/vision_transformer_relpos.py
# Projector: ibot/models/head.py, simsiam/builder.py
# --------------------------------------------------------
from functools import partial
import pdb
import torch
import torch.nn as nn
from vision_transformer import PatchEmbed, Block, CBlock
from util.pos_embed import get_2d_sincos_pos_embed
def expand_patches_indice(ids_shuffle, sub_w, H, W):
# convert to the 2d coordinate in sub scale (49 patches)
ids_x, ids_y = torch.mul(torch.div(ids_shuffle, sub_w, rounding_mode='floor'),2), torch.mul(torch.fmod(ids_shuffle, sub_w),2)
ids_x1, ids_y1 = torch.add(ids_x, 1), torch.add(ids_y, 1)
# project back to the 1d coordinate in original scale (196 patches)
ids_xy = torch.add(ids_y, ids_x, alpha=W)
ids_xy1 = torch.add(ids_y1, ids_x, alpha=W)
ids_x1y = torch.add(ids_y, ids_x1, alpha=W)
ids_x1y1 = torch.add(ids_y1, ids_x1, alpha=W)
return ids_xy, ids_xy1, ids_x1y, ids_x1y1
class DMJDConViT(nn.Module):
""" DMJD with ConViT backbone
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=1024, depth=24,
num_heads=16, decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, decoder_pred_dim=768):
super().__init__()
# --------------------------------------------------------------------------
# DMJD encoder specifics
# --------------------------------------------------------------------------
self.patch_embed1 = PatchEmbed(
img_size=img_size[0], patch_size=patch_size[0], in_chans=in_chans, embed_dim=embed_dim[0])
self.patch_embed2 = PatchEmbed(
img_size=img_size[1], patch_size=patch_size[1], in_chans=embed_dim[0], embed_dim=embed_dim[1])
self.patch_embed3 = PatchEmbed(
img_size=img_size[2], patch_size=patch_size[2], in_chans=embed_dim[1], embed_dim=embed_dim[2])
self.patch_embed4 = nn.Linear(embed_dim[2], embed_dim[2])
self.stage1_output_decode = nn.Conv2d(embed_dim[0], embed_dim[2], 4, stride=4)
self.stage2_output_decode = nn.Conv2d(embed_dim[1], embed_dim[2], 2, stride=2)
num_patches = self.patch_embed3.num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim[2]), requires_grad=False)
self.blocks1 = nn.ModuleList([
CBlock(
dim=embed_dim[0], num_heads=num_heads, mlp_ratio=mlp_ratio[0], qkv_bias=True, norm_layer=norm_layer)
for i in range(depth[0])])
self.blocks2 = nn.ModuleList([
CBlock(
dim=embed_dim[1], num_heads=num_heads, mlp_ratio=mlp_ratio[1], qkv_bias=True, norm_layer=norm_layer)
for i in range(depth[1])])
self.blocks3 = nn.ModuleList([
Block(
dim=embed_dim[2], num_heads=num_heads, mlp_ratio=mlp_ratio[2], qkv_bias=True, norm_layer=norm_layer)
for i in range(depth[2])])
self.norm = norm_layer(embed_dim[-1])
self.embed_dim = embed_dim
# --------------------------------------------------------------------------
# DMJD decoder specifics
# --------------------------------------------------------------------------
# Masked prediction branch
self.decoder_embed = nn.Linear(embed_dim[-1], decoder_embed_dim, bias=True)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches, decoder_embed_dim), requires_grad=False) # fixed sin-cos embedding
self.decoder_blocks = nn.ModuleList([
Block(decoder_embed_dim, decoder_num_heads, mlp_ratio[0], qkv_bias=True, norm_layer=norm_layer)
for i in range(decoder_depth)])
self.decoder_norm = norm_layer(decoder_embed_dim)
self.decoder_pred = nn.Linear(decoder_embed_dim, decoder_pred_dim, bias=True) # decoder to target features
# Visible distillation branch
self.proj_embed = nn.Sequential(
nn.Linear(embed_dim[-1], decoder_embed_dim),
norm_layer(decoder_embed_dim),
nn.GELU(),
nn.Linear(decoder_embed_dim, decoder_embed_dim),
norm_layer(decoder_embed_dim),
nn.GELU(),
nn.Linear(decoder_embed_dim, decoder_embed_dim),
norm_layer(decoder_embed_dim, elementwise_affine=False),
)
self.predictor = nn.Sequential(
# nn.Linear(decoder_embed_dim, decoder_embed_dim),
# norm_layer(decoder_embed_dim),
# nn.GELU(),
nn.Linear(decoder_embed_dim, decoder_pred_dim),
)
# --------------------------------------------------------------------------
self.initialize_weights()
def initialize_weights(self):
# initialization
# initialize (and freeze) pos_embed by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed3.num_patches**.5), cls_token=False)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed3.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1], int(self.patch_embed3.num_patches**.5), cls_token=False)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.mask_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
def random_masking(self, x, mask_ratio, pred_ratio=1.0):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N = x.shape[0]
L = self.patch_embed3.num_patches
len_keep = int(L * (1 - mask_ratio))
noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
"""
### ---------------------------
### disjoint mask
### ---------------------------
"""
disjoint_ratio = min(pred_ratio - mask_ratio, mask_ratio)
num_mask = L - len_keep
num_extra = int(disjoint_ratio * L)
# sampling disjoint mask
ids_joint, ids_disj = ids_shuffle[:, len_keep:], ids_keep
shuffle_disj_ids = torch.randperm(ids_disj.shape[1], device=ids_disj.device)
shuffle_joint_ids = torch.randperm(ids_joint.shape[1], device=ids_joint.device)
mask_ids1, vis_ids1 = shuffle_disj_ids[:num_extra], shuffle_disj_ids[num_extra:]
mask_ids2, vis_ids2 = shuffle_joint_ids[:(num_mask-num_extra)], shuffle_joint_ids[(num_mask-num_extra):]
# concat the indice with a specific order [visible indice, masked indice]
ids_shuffle = torch.cat([ids_disj[:, vis_ids1], ids_joint[:, vis_ids2], ids_disj[:, mask_ids1], ids_joint[:, mask_ids2]], dim=1)
ids_restore_disj = torch.argsort(ids_shuffle, dim=1)
# keep the first subset of disjoint mask
ids_keep_disj = ids_shuffle[:, :len_keep]
# generate the binary mask: 0 is keep, 1 is remove
mask_disj = torch.ones([N, L], device=x.device)
mask_disj[:, :len_keep] = 0
# unshuffle to get the binary mask
mask_disj = torch.gather(mask_disj, dim=1, index=ids_restore_disj)
# build batch
ids_keep = torch.cat([ids_keep, ids_keep_disj], dim=0)
mask = torch.cat([mask, mask_disj], dim=0)
ids_restore = torch.cat([ids_restore, ids_restore_disj], dim=0)
return ids_keep, mask, ids_restore
def block_masking(self, x, mask_ratio, pred_ratio=1.0):
"""
Perform consecutive-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
x: [N, L, D], sequence
"""
N = x.shape[0]
L = self.patch_embed3.num_patches
sub_L = L//4
H = W = L ** 0.5
len_keep = int(sub_L * (1 - mask_ratio))
noise = torch.rand(N, sub_L, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle_ori = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
# expand mask to consecutive patches
ids_xy, ids_xy1, ids_x1y, ids_x1y1 = expand_patches_indice(ids_shuffle_ori, sub_L**0.5, H, W)
ids_shuffle = torch.cat([
ids_xy[:, :len_keep], ids_xy1[:, :len_keep], ids_x1y[:, :len_keep], ids_x1y1[:, :len_keep],
ids_xy[:, len_keep:], ids_xy1[:, len_keep:], ids_x1y[:, len_keep:], ids_x1y1[:, len_keep:]],
dim=1).to(torch.long)
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :4*len_keep]
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], device=x.device)
mask[:, :4*len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
"""
### ---------------------------
### disjoint mask
### ---------------------------
"""
disjoint_ratio = min(pred_ratio - mask_ratio, mask_ratio)
num_mask = sub_L - len_keep
num_extra = int(disjoint_ratio * sub_L)
# sampling disjoint mask on a subset
ids_joint, ids_disj = ids_shuffle_ori[:, len_keep:], ids_shuffle_ori[:, :len_keep]
shuffle_disj_ids = torch.randperm(ids_disj.shape[1], device=ids_disj.device)
shuffle_joint_ids = torch.randperm(ids_joint.shape[1], device=ids_joint.device)
# though have the same index, but batch instances are not same
mask_ids1, vis_ids1 = shuffle_disj_ids[:num_extra], shuffle_disj_ids[num_extra:]
mask_ids2, vis_ids2 = shuffle_joint_ids[:(num_mask-num_extra)], shuffle_joint_ids[(num_mask-num_extra):]
# concat with a specific order [visible indice, masked indice] in a sub patches
ids_shuffle = torch.cat([ids_disj[:, vis_ids1], ids_joint[:, vis_ids2], ids_disj[:, mask_ids1], ids_joint[:, mask_ids2]], dim=1)
# expand mask to consecutive patches
ids_xy, ids_xy1, ids_x1y, ids_x1y1 = expand_patches_indice(ids_shuffle, sub_L**0.5, H, W)
# concat with a specific order [visible indice, masked indice] in the whole patches
ids_shuffle = torch.cat([
ids_xy[:, :len_keep], ids_xy1[:, :len_keep], ids_x1y[:, :len_keep], ids_x1y1[:, :len_keep],
ids_xy[:, len_keep:], ids_xy1[:, len_keep:], ids_x1y[:, len_keep:], ids_x1y1[:, len_keep:]],
dim=1).to(torch.long)
ids_restore_disj = torch.argsort(ids_shuffle, dim=1)
# keep the first subset of disjoint mask
ids_keep_disj = ids_shuffle[:, :4*len_keep]
# generate the binary mask: 0 is keep, 1 is remove
mask_disj = torch.ones([N, L], device=x.device)
mask_disj[:, :4*len_keep] = 0
# unshuffle to get the binary mask
mask_disj = torch.gather(mask_disj, dim=1, index=ids_restore_disj)
# build batch
ids_keep = torch.cat([ids_keep, ids_keep_disj], dim=0)
mask = torch.cat([mask, mask_disj], dim=0)
ids_restore = torch.cat([ids_restore, ids_restore_disj], dim=0)
return ids_keep, mask, ids_restore
def forward_encoder(self, x, mask_ratio, mask_type='block', pred_ratio=1.0):
# prepare mask
if mask_type == 'rand':
ids_keep, mask, ids_restore = self.random_masking(x, mask_ratio, pred_ratio)
else:
ids_keep, mask, ids_restore = self.block_masking(x, mask_ratio, pred_ratio)
mask_for_patch1 = mask.reshape(-1, 14, 14).unsqueeze(-1).repeat(1, 1, 1, 16).reshape(-1, 14, 14, 4, 4).permute(0, 1, 3, 2, 4).reshape(mask.shape[0], 56, 56).unsqueeze(1)
mask_for_patch2 = mask.reshape(-1, 14, 14).unsqueeze(-1).repeat(1, 1, 1, 4).reshape(-1, 14, 14, 2, 2).permute(0, 1, 3, 2, 4).reshape(mask.shape[0], 28, 28).unsqueeze(1)
# embed patches
x = self.patch_embed1(x)
# repeat twice for two masked views
x = torch.cat([x, x], dim=0)
for blk in self.blocks1:
x = blk(x, 1 - mask_for_patch1)
stage1_embed = self.stage1_output_decode(x).flatten(2).permute(0, 2, 1)
x = self.patch_embed2(x)
for blk in self.blocks2:
x = blk(x, 1 - mask_for_patch2)
stage2_embed = self.stage2_output_decode(x).flatten(2).permute(0, 2, 1)
x = self.patch_embed3(x)
x = x.flatten(2).permute(0, 2, 1)
x = self.patch_embed4(x)
# add pos embed w/o cls token
x = x + self.pos_embed
# pick out visible tokens
x = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, x.shape[-1]))
stage1_embed = torch.gather(stage1_embed, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, stage1_embed.shape[-1]))
stage2_embed = torch.gather(stage2_embed, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, stage2_embed.shape[-1]))
# apply Transformer blocks
for blk in self.blocks3:
x = blk(x)
x = x + stage1_embed + stage2_embed
x = self.norm(x)
return x, mask, ids_restore
def forward_decoder(self, x, ids_restore):
# branch 1-visible tokens distillation
x_vis = self.proj_embed(x)
x_vis = self.predictor(x_vis)
# branch 2-masked tokens reconstruction
# embed tokens
x = self.decoder_embed(x)
# append mask tokens to sequence
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] - x.shape[1], 1)
x_ = torch.cat([x, mask_tokens], dim=1) # no cls token
x = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2])) # unshuffle
# add pos embed
x = x + self.decoder_pos_embed
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# predictor projection
x = self.decoder_pred(x)
return x, x_vis
def forward_loss(self, imgs, pred, target, mask, mim_loss_type='l2', vis_loss_type='smooth_l1', theta=1.0):
"""
imgs: [N, 3, H, W]
pred: [N, L, p*p*3]
mask: [N, L], 0 is keep, 1 is remove,
"""
# repeat target twice for two masked views
target = torch.cat([target, target], dim=0)
# loss on visible branch
pred, pred_vis = pred
target_vis = target[torch.abs(mask-1).to(torch.bool)].view(target.shape[0], -1, target.shape[-1])
if vis_loss_type == 'smooth_l1':
loss_vis = nn.functional.smooth_l1_loss(pred_vis, target_vis, reduction='none', beta=2.0)
else:
loss_vis = (pred_vis - target_vis) ** 2
loss_vis = loss_vis.mean()
# loss on masked branch
if mim_loss_type == 'smooth_l1':
loss_mim = nn.functional.smooth_l1_loss(pred, target, reduction='none', beta=2.0)
else:
loss_mim = (pred - target) ** 2
loss_mim = loss_mim.mean(dim=-1) # [N, L], mean loss per patch
loss_mim = (loss_mim * mask).sum() / mask.sum() # mean loss on removed patches
return (loss_mim + theta * loss_vis)
def forward(self, imgs, target, mask_ratio=0.75, mask_type='rand', mim_loss_type='l2', vis_loss_type='smooth_l1'):
latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio, mask_type)
pred = self.forward_decoder(latent, ids_restore) # [N, L, p*p*3]
loss = self.forward_loss(imgs, pred, target, mask, mim_loss_type, vis_loss_type)
return loss, pred, mask
def dmjd_convit_base_patch16_dec512d2b_hog(**kwargs):
model = DMJDConViT(
img_size=[224, 56, 28], patch_size=[4, 2, 2], embed_dim=[256, 384, 768], depth=[2, 2, 11], num_heads=12,
decoder_embed_dim=512, decoder_depth=2, decoder_num_heads=16,
mlp_ratio=[8, 8, 4], norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def dmjd_convit_base_patch16_dec512d8b_hog(**kwargs):
model = DMJDConViT(
img_size=[224, 56, 28], patch_size=[4, 2, 2], embed_dim=[256, 384, 768], depth=[2, 2, 11], num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=[8, 8, 4], norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def dmjd_convit_large_patch16_dec512d8b_hog(**kwargs):
model = DMJDConViT(
img_size=[224, 56, 28], patch_size=[4, 2, 2], embed_dim=[384, 768, 1024], depth=[2, 2, 23], num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=[8, 8, 4], norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
# set recommended archs
dmjd_convit_base_patch16_dec2_hog = dmjd_convit_base_patch16_dec512d2b_hog
dmjd_convit_base_patch16_dec8_hog = dmjd_convit_base_patch16_dec512d8b_hog
dmjd_convit_large_patch16_dec8_hog = dmjd_convit_large_patch16_dec512d8b_hog