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Profs. Martin Jaggi and Nicolas Flammarion
Optimization for Machine Learning – CS-439 - IC
08.07.2021 from 08h15 to 11h15
Duration : 180 minutes

1
Student One

SCIPER : 111111

Wait for the start of the exam before turning to the next page. This document is printed
double sided, 16 pages. Do not unstaple.

• This is a closed book exam. No electronic devices of any kind.

• Place on your desk: your student ID, writing utensils, one double-sided A4 page cheat sheet (hand-
written or 11pt min font size) if you have one; place all other personal items below your desk or on
the side.

• You each have a different exam.

• For technical reasons, do use black or blue pens for the MCQ part, no pencils! Use white
corrector if necessary.
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First part, multiple choice

There is exactly one correct answer per question.

Smoothness and gradient descent
Question 1 Let us define f : x ∈ R 7→ cos(x). We consider xt ∈ R and xt+1 = xt − ∇f(xt). Assume
that xt is not a critical point of f . Which one of the following statements is true:

f(xt+1) = −1

There exists an xt such that f(xt+1) > f(xt)

sign(xt+1) = sign(xt)

∥∇f(xt+1)∥ < ∥∇f(xt)∥

xt+1 < xt

None of the above

Question 2 Assume you want to minimize a function f : x ∈ Rd 7→ 1
n

∑n
i=1 fi(x) ∈ R, where for each i,

fi is convex and L-smooth over Rd. Which of the following statements is false:

If I use a constant step-size γ < 1
L , then GD will converge but not SGD.

If n = 1, then SGD and GD correspond to the same recursion.

If n is very big then gradient descent can be computationally infeasible.

SGD corresponds to xt+1 = xt− γt∇fit(xt) where it is the remainder of t divided by n: t = n⌊ t
n⌋+ it.

Question 3 For a > 0 and b ∈ R, consider f(x) = a ·x4+b, x ∈ R. Assume you perform gradient descent
on f with a constant step-size γ. Which one of the following statements is true:

If |x0| ≤ 1 and 0 < γ ≤ 1 then the iterates converge to 0.

Depending on my starting point x0 and my step size, either my iterates xt converge to 0, or diverge
|xt| −→

t→∞
+∞.

For the iterates to converge, my step size must depend on b.

For a starting point x0, if 0 < γ < 1
2ax2

0
then the iterates converge to 0.

For a starting point x0, whatever step size I pick, the iterates will never converge to 0.

Newton’s Method and Quasi-Newton
Question 4 How many steps does the Newton’s method require to reach an error smaller than ε > 0

when minimizing a strictly convex quadratic function:

It depends on the step size.

O(log(1/ε))

1

It depends on the condition number of the quadratic function.

O(1/ε)

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 5 We apply Newton’s method to a function f with a critical point x⋆ starting from iterate x0.
Assume that f has bounded inverse Hessians and Lipschitz continuous Hessians. Among the following
propositions, what is the extra assumption which allows to show that ∥xT−x⋆∥ < ε after T = O(log log(1/ε))

steps?

Convexity.

Smoothness.

Taking the average iterate.

Decreasing step size.

Strong convexity.

∥x0 − x⋆∥ should be small.

Function properties

Consider the function d : D → R with D ⊆ R2 defined as d(x) = x2
1 ·x2

2, where x1 and x2 are the coordinates
of x. Let us consider three cases: (A) when D = R2, (B) when D = {x ∈ R2 : ∥x∥2 ≤ 1}, and (C) when
D = {x ∈ R2 : x2 = 3}.

Question 6 In which cases is the function d convex ?

C only.

A, B and C.

A and C only.

A only.

A and B only.

B and C only.

B only.

None of them.

Question 7 In which cases is the function d L-smooth in the sense of the definition used in the course?

C only.

B and C only.

A and B only.

A and C only.

A only.

B only.

A, B and C.

None of them.

y For your examination, preferably print documents compiled from auto-
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Coordinate descent
Question 8 Compared to gradient descent, coordinate descent with gradient-based updates can speed up
optimization when coordinate-wise gradients are cheap to compute, and when the coordinates i (i = 1, . . . , d)

have varying smoothness constants Li. We use coordinate-dependent step sizes ηi, and make a gradient step
on coordinate i with probability pi. To obtain a convergence rate that depends on L̄ = 1

d

∑d
i=1 Li instead of

maxi Li, you would use

ηi < ηj and pi < pj if Li > Lj

ηi > ηj and pi < pj if Li > Lj

ηi < ηj and pi > pj if Li > Lj

ηi > ηj and pi > pj if Li > Lj

Subgradient descent
Question 9 The Leaky ReLU is an activation function defined as

f(x) =

{
x if x > 0

λx if x ≤ 0
,

where λ ∈ (0, 1) is a constant. Which of the following values is a subgradient of f at x = 0?

1+λ
2

−λ
2

0

λ
2

2

Constrained optimization

Consider the Lasso regression min∥x∥1≤1 f(x) =
1
2∥Ax− b∥2 where

A =

[
1 2

0 1

]
and b =

[
0

2

]
.

Question 10 When using the Frank-Wolfe algorithm, which of the following points can be the output of
the linear minimization oracle LMO(∇f(x0)) where x0 = [ 12 ,

1
2 ]

⊤?

[−1, 0]⊤

[0, 0]⊤

[1, 0]⊤

[0, 1]⊤

Question 11 Which of the following points can be reached by applying 1 step of projected gradient
descent, starting from x0 = [0, 1]⊤, with stepsize γ = 1?

[− 1
2 ,−

1
2 ]

⊤

[− 2
3 ,

1
3 ]

⊤

[1, 0]⊤

[0, 0]⊤

y For your examination, preferably print documents compiled from auto-
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Proximal gradient descent
Question 12 For h(x) = |x|, the soft thresholding operator is defined by the proximal operator proxh,t(u).
Then for u ≥ t > 0, proxh,t(u) can be written as which of the following?

u+ t

0

u

u− t

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Second part, true/false questions
Question 13 (Convexity) A function f(x) is convex if and only if g(x) = −f(x) is non-convex.

TRUE FALSE

Question 14 (Convexity) Any critical point of a convex differentiable function on an open domain is a
global minimizer of the function.

TRUE FALSE

Question 15 (Nesterov Accelerated Gradient) Nesterov’s accelerated gradient method asymptotically
requires fewer update steps than Gradient Descent on smooth convex functions to achieve the same subop-
timality ε. To achieve this, the method requires more memory of size O(d2), where d is the dimensionality
of the parameter vector to be optimized.

TRUE FALSE

Question 16 (Subgradient Descent) For strongly convex and non-differentiable function, subgradient
descent achieves a O(1/T ) convergence rate with a small enough constant stepsize.

TRUE FALSE

Question 17 (Projected Gradient Descent) Applying projected gradient descent on an Euclidean ball
{x : ∥x∥2 ≤ 1} is equivalent to gradient descent with adaptive learning rate.

TRUE FALSE

Question 18 (Gradient Descent) Let f : x ∈ Rd → R be an L-smooth and convex function. We perform
gradient descent with step-size 0 < γ < 1

L , from a starting point x0. Then the iterates will converge towards
a point x⋆ with f(x⋆) = minx∈Rd f(x).

TRUE FALSE

Question 19 (Frank-Wolfe) Consider min(x1,x2)∈R2
+
|x1 − 0.1|2 + |x2 − 0.1|2, if we apply the Frank-Wolfe

algorithm with stepsize γ := 2
t+2 , then it converge at a rate of O(1/T ) for any initial iterate.

TRUE FALSE

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Solution:

Third part, open questions

Answer in the space provided! Your answer must be justified with all steps. Do not cross any checkboxes,
they are reserved for correction.

Bregman Divergence

Let us consider a strictly convex and differentiable function h on Rd. We define the Bregman divergence
associated with the function h by:

Dh(x,y) := h(x)− h(y)−∇h(y)⊤(x− y) for all x,y ∈ Rd,

Question 20: 1 point. Show that the function x 7→ Dh(x,y) is strictly convex, for any fixed y.

0 1

Solution: Dh(·,y) is strictly convex as the sum of a the strictly convex function h and of a linear
function ∇h(y)⊤( · − y).

Question 21: 1 point. Show that Dh(x,y) ≥ 0 for all x,y ∈ Rd and that Dh(x,y) = 0 if and only if x = y.

0 1

Solution: Since h is convex we have for all x,y ∈ D, h(x) ≥ h(y) + ∇h(y)⊤(x − y). Since h is
strictly convex h(x) = h(y) +∇h(y)⊤(x− y) if and only if x = y.

Question 22: 1 point. Compute D1/2∥·∥2
2
.

0 1

Solution: D1/2∥·∥2
2
(x,y) = 1/2∥x− y∥22

Question 23: 2 points. Is Dh symmetric, i.e., Dh(x,y) = Dh(y,x)? Prove your answer.

0 1 2

Solution: No, consider for example h(x) = x log(x) and its associated Bregman divergence Dh(x, y) =

x log(x/y)

Question 24: 2 point. Let x,y, z ∈ Rd. Simplify

Dh(x, z)−Dh(x,y)−Dh(y, z).

0 1 2

Solution:

Dh(x, z)−Dh(x,y)−Dh(y, z) = (∇h(y)−∇h(z))⊤(x− y).

Let us consider now a second convex function f also defined on Rd. We assume that f is continuously
differentiable on Rd. We define the following key property

∃ L > 0 such that L·h− f is convex on Rd. (S)y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 25: 2 points. Show that the condition (S) is equivalent to

f(x) ≤ f(y) +∇f(y)⊤(x− y) + L·Dh(x,y) ∀ x,y ∈ Rd.

0 1 2

Solution: The function Lh− f is convex if and only if

(Lh− f)(x) ≥ (Lh− f)(y) +∇(Lh− f)(y)⊤(x− y).

Rearranging we obtain

f(x) ≤ f(y) +∇f(y)⊤(x− y) + L
(
h(x)− h(y)−∇h(y)⊤(x− y)

)
≤ f(y) +∇f(y)⊤(x− y) + LDh(x,y).

Question 26: 3 points. Assume condition (S). Show that for any y,x, z ∈ Rd we have

f(x) ≤ f(y) +∇f(z)⊤(x− y) + LDh(x, z).

0 1 2 3

Solution: Using Question 25 we have

f(x) ≤ f(z) +∇f(z)⊤(x− z) + LDh(x, z).

Using the convexity of f we also have

0 ≤ f(y)− f(z)−∇f(z)⊤(y − z)

Summing both inequality yields to the result.

The Mirror Descent Algorithm

We consider now the following update rule defined for a step size γ ≥ 0 by:

Tγ(x) := arg min
u∈Rd

{
f(x) +∇f(x)⊤(u− x) +

1

γ
Dh(u,x)

}
.

Question 27: 2 points. We assume in this question that h = 1/2∥ · ∥22. Show that Tγ(x) is well defined and
compute it. Which algorithm do you recover if you iterate xt+1 := Tγ(xt) ?

0 1 2

Solution: For this specific choice of h, the function in the bracket is strongly convex, and therefore
has a unique global minimum. We obtain by setting the gradient to zero Tγ(x) = x − γ∇f(x). We
recover the gradient descent algorithm.

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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We consider that the function h satisfies additionally the following properties:

• The gradient of h takes all possible values, i.e., ∇h(Rd) = Rd.

We consider the optimization algorithm defined as x0 ∈ Rd and which iterates:

xt+1 := Tγ(xt) for t ∈ N. (MD)

This algorithm is called Mirror Descent.

Question 28: 3 points. Show that the operator Tγ is well-defined and that, for an appropriate function g

you will give, the recursion can be rewritten as:

g(xt+1) = g(xt)− γ∇f(xt).

0 1 2 3

Solution: Since h is strictly convex, the objective can have at most one minimizer. Computing the
gradient we obtain ∇f(x) + 1/γ(∇h(u)−∇h(x)). Using that ∇h(Rd) = Rd grants the existence of u
such that ∇f(x)+1/γ(∇h(u)−∇h(x)) = 0. Therefore such a u is a stationary point of a differentiable
and convex function over an open set and therefore u is a global minimum of the function. And
therefore

∇h(xt+1) = ∇h(xt)− γ∇f(xt).

Analysis of The Mirror Descent Algorithm

Question 29: 3 points. Let x,u ∈ Rd. Define x+ := Tγ(x) and assume that γ < 1/L where L is defined in
condition (S). Show that

γ(f(x+)− f(u)) ≤ Dh(u,x)−Dh(u,x
+)− (1− γL)Dh(x

+,x).

0 1 2 3

Solution: Using the three point equality of Question 24 we directly obtain:

Dh(u,x)−Dh(u,x
+)− (1− γL)Dh(x

+,x) = (∇h(x+)−∇h(x))⊤(u− x+) + γLDh(x
+,x)

= −γ∇f(x)⊤(u− x+) + γLDh(x
+,x)

≥ γ(f(x+)− f(u))

where we have used Question 26 for the last inequality.

Question 30: 2 points. Let u ∈ Rd and consider the iterates defined in equation (MD). We denote the
average of the iterates xt by x̄t =

1
t

∑t
i=1 xi. Show the following inequality:

f(x̄t)− f(u) ≤ 1

γt
Dh(u,x0)

0 1 2

Solution: Using the previous question with u,xi we have that

γ(f(xi+1)− f(u)) ≤ Dh(u,xi)−Dh(u,xi+1)

Summing these for i = 0, . . . , t− 1 yields to

γ

t−1∑
i=0

(f(xi+1)− f(u)) ≤ Dh(u,x0)−Dh(u,xt),

and applying Jensen’s inequality we obtain:

f
(

1
t

t∑
i=1

xi

)
− f(u) ≤ Dh(u,x0)−Dh(u,xt)

γt
,

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Question 31: 3 points. Show a similar inequality for the last iterate xt:

f(xt)− f(u) ≤ 1

γt
Dh(u,x0)

0 1 2 3

Solution: Using Question 30 with u = xt we obtain that the function values are decreasing and
therefore the result on the last iterate comes from the result on the averaged iterates.

Question 32: 2 points. Does the inequality proved in Question 32 imply convergence f(xt) → f(u)? Prove
your answer.

0 1 2

Solution: No, it does not because we do not have that f(xt)− f(u) ≥ 0

Question 33: 2 points. Let us assume that argminx∈Rd f(x) ̸= ∅. Show that for any solution x⋆ ∈
argminx∈Rd f ,

f(xt)−min
Rd

f ≤ 1

γt
Dh(x⋆,x0)

Does this inequality imply convergence f(xt) → f(x⋆)? Prove your answer.

0 1 2

Solution: ...

y For your examination, preferably print documents compiled from auto-
multiple-choice.
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Application to Poison Linear Inverse Problems

Let us denote by R+ = {x ∈ R, x ≥ 0} and R+∗ = {x ∈ R, x > 0}. Given a matrix A ∈ Rm×n
+∗ and a vector

b ∈ Rm
+∗, the goal is to reconstruct a signal x ∈ Rn

+ such that

Ax ≃ b.

A natural way of recovering x is to minimize the Kullback-Leibler divergence

min
x∈Rn

+

f(x) :=

m∑
i=1

bi log
bi

(Ax)i
+ (Ax)i − bi,

where bi is the i-th coordinate of the vector b.

Question 34: 2 points. Show that the function f is convex over Rn
+∗.

0 1 2

Solution: We note that the function f is the Bregman divergence associated with the Shannon
entropy u 7→ u log u which is convex. You can also derive this with composition rules of convex
functions, starting from − log x being convex.

Question 35: 3 points. Is the function f smooth on Rn
+∗? Justify your answer.

0 1 2 3

Solution: We can compute the Hessian of f :

∇2f(x) =

m∑
i=1

bi
aia

⊤
i

(a⊤i x)
2
,

where ai are the rows of the matrix A. We note that ∇2f(x) is diverging to ∞ when x converge to
the boundary 0 and therefore the function is not globally smooth.

Let us denote by ai the i-th row of the matrix A. We assume that ai ̸= 0 and rj :=
∑m

i=1 aij > 0 for all j.
Let us consider Burg’s entropy defined by h(x) := −

∑n
j=1 log xj on Rn

+∗.

Question 36: 5 points. Show that for any L satisfying L ≥ ∥b∥1, the function Lh − f is convex on Rn
+∗

(HINT: you can compute the Hessian and show that it is positive semi-definite.)

0 1 2 3 4 5

Solution: Since f and h are C2 we can just compute the Hessian. First

d⊤∇2h(x)d =

n∑
j=1

d2j
x2
j

. (1)

Moreover using the definition of f , ∇f(x) =
∑m

i=1(1−
bi

a⊤
i x

)ai and thus

d⊤∇2f(x)d =

m∑
i=1

bi
(a⊤i d)

2

(a⊤i x)
2

(2)

Now using the Jensen’s inequality to t2 we have

(u⊤d)2

(u⊤x)2
≤

∑
j

ujxj

u⊤x
(dj/xj)

2 ≤
∑
j

(dj/xj)
2 (3)

Applying the previous inequality to u := ai ̸= 0 we obtain

d⊤∇2g(x)d =

n∑
j=1

d2j
x2
j

≤
∑
i

bi
∑
j

(dj/xj)
2 (4)

y For your examination, preferably print documents compiled from auto-
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We will minimize the function f using the Mirror Descent algorithm and the potential h whose update rule
is defined similarly by1

xt+1 := Tγ(xt) for t ∈ N, where Tγ(x) := arg min
u∈Rd

+∗

{
f(x) +∇f(x)⊤(u− x) +

1

γ
Dh(u,x)

}
. (MDA)

Question 37: 4 points. Show that Tγ(x) is well defined for γ ≤ 1
∥b∥1

. Find a closed form expression for the
recursion defined in Eq. (MDA).

0 1 2 3 4

Solution: The function f is separable, and therefore the iterates defined in Eq.(MDA) reduces to
solve the one dimensional convex problem:

x+ = argmin
u>0

{gu+
1

γ
(
u

x
− log

u

v
},

for u > 0 and where g is one coordinate of the gradient ∇f(x). When u → 0, the function is going to
+∞. Let us show that γgx + 1 > 0 such that the function is also going to +∞ when u → +∞ and
x+ = x

1+γgx is well defined. By definition of ∇f and γ, the condition writes:

1/γ +
∑
i

ai,jxj −
∑
i

biai,j∑
j ai,jxj

xj ≥
∑
i

bi +
∑
i

ai,jxj −
∑
j

biai,j∑
i ai,jxj

xj

≥
∑
i

bi
(
1− ai,jxj∑

j ai,jxj

)
+
∑
i

ai,jxj > 0

Also justify that it is > 0.

Define cj(x) :=
∑m

j=1 bi
ai,j

a⊤
i x

. The j-th component of the gradient of ∇f(x) can be written as

gj = rj − cj(x),

And the iterate writes:

x+
j =

xj

1 + γxj(rj − cj(x))
,

for j = 1, · · · , n.

Question 38: 3 points. Assuming that you can apply the results derived in Question 34, which convergence
rate do you obtain with this algorithm on this problem? Why is it surprising?

0 1 2 3

Solution: We obtain a 1/t convergence for a non-smooth problem!

1Note that the update rule here is similar to the standard update rule but the minimum is now taken over Rd
+∗.y For your examination, preferably print documents compiled from auto-

multiple-choice.
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