Optimization for Machine Learning CS-439

Lecture 2: Gradient Descent

Nicolas Flammarion

EPFL - github.com/epfml/OptML_course

March 3, 2022

Chapter 2

Gradient Descent

The Algorithm

Get near to a minimum \mathbf{x}^* / close to the optimal value $f(\mathbf{x}^*)$? (Assumptions: $f : \mathbb{R}^d \to \mathbb{R}$ convex, differentiable, has a global minimum \mathbf{x}^*)

Goal: Find $\mathbf{x} \in \mathbb{R}^d$ such that

$$f(\mathbf{x}) - f(\mathbf{x}^{\star}) \le \varepsilon.$$

Note that there can be several global minima $\mathbf{x}_1^{\star} \neq \mathbf{x}_2^{\star}$ with $f(\mathbf{x}_1^{\star}) = f(\mathbf{x}_2^{\star})$.

Iterative Algorithm: choose $\mathbf{x}_0 \in \mathbb{R}^d$.

 $\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),$

for timesteps $t = 0, 1, \ldots$, and stepsize $\gamma \ge 0$.

Continuous-time analysis

$$\frac{d}{dt} \mathcal{K}(t) = - \mathcal{V}f(\mathbf{x}(t)) \qquad \text{Gradient flow}$$

$$- \text{Not implementable but only for the analysis}$$

$$- \frac{d}{dt} \frac{1}{2} / (\mathbf{X}(t) - \mathbf{X}_{\mathbf{x}}) / (\mathbf{z} = (\mathbf{z}(t) - \mathbf{x}_{\mathbf{x}})^{T} \mathbf{x}_{t}$$

$$= - (\mathbf{x}(t) - \mathbf{x}_{\mathbf{x}})^{T} \mathcal{V}f(\mathbf{rest})$$

Intuition for the discretization error
GF is rumming GD with slop size dt
After T slops GD will be close from GF of time Z=T8

$$\chi_{T} N \chi_{CT6}$$
 $f^{C}\chi_{T}$ - $f^{C}\chi_{X}$ $N \frac{1}{2} \frac{11\chi_{G} - \chi_{X}h^{2}}{T\chi}$
Ex:
 $\chi_{H} N \chi_{CT6}$ $f^{C}\chi_{T}$ - $f^{C}\chi_{X}$ $N \frac{1}{2} \frac{11\chi_{G} - \chi_{X}h^{2}}{T\chi}$
Ex:
 $\chi_{H} N \chi_{H} = \pi R$
 $f^{T} N \nabla \chi_{CT6}$ $f^{T} = \pi R$ $h^{T} \chi_{H}$ $h^{T} = \pi R$
 $f^{T} N \nabla \chi_{CT6}$ $f^{T} = \pi R$ $h^{T} = \pi R$
 $f^{T} N \chi_{H} = \pi R$

7/22

Vanilla analysis

How to bound $f(\mathbf{x}_t) - f(\mathbf{x}^{\star})$?

• Abbreviate $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$ (gradient descent: $\mathbf{g}_t = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$).

$$\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma} (\mathbf{x}_t - \mathbf{x}_{t+1})^{\top} (\mathbf{x}_t - \mathbf{x}^{\star}).$$

► Apply
$$2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2$$
 to rewrite
 $\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$
 $= \frac{\gamma}{2} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_t - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^2 \right)$

Sum this up over the first T iterations:

$$\sum_{t=0}^{T-1} \mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \left(\|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2 - \|\mathbf{x}_T - \mathbf{x}^{\star}\|^2 \right)$$

EPFL Optimization for Machine Learning CS-439

Vanilla analysis II

Use first-order characterization of convexity: $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y}$

► with
$$\mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^*$$
:
$$f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top(\mathbf{x}_t - \mathbf{x}^*)$$

giving

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \right) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2,$$

an upper bound for the average error $f(\mathbf{x}_t) - f(\mathbf{x}^\star)$ over the steps

last iterate is not necessarily the best one

► stepsize is crucial

Lipschitz convex functions: $O(1/\varepsilon^2)$ steps

Assume that all gradients of f are bounded in norm.

- Equivalent to f being Lipschitz (Theorem 1.9; Exercise 12).
- Rules out many interesting functions (for example, the "supermodel" $f(x) = x^2$)

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that $\|\mathbf{x}_0 - \mathbf{x}^*\| \le R$ and $\|\nabla f(\mathbf{x})\| \le B$ for all \mathbf{x} . Choosing the stepsize

$$\gamma := \frac{R}{B\sqrt{T}},$$

gradient descent yields

$$\frac{1}{T}\sum_{t=0}^{T-1} f(\mathbf{x}_t) - f(\mathbf{x}^\star) \le \frac{RB}{\sqrt{T}}.$$

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II Proof.

▶ Plug $||\mathbf{x}_0 - \mathbf{x}^*|| \le R$ and $||\mathbf{g}_t|| \le B$ into Vanilla Analysis II:

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \le \frac{\gamma}{2} B^2 T + \frac{1}{2\gamma} R^2.$$

• choose γ such that

$$q(\gamma) = \frac{\gamma}{2}B^2T + \frac{R^2}{2\gamma}$$

is minimized.

- Solving $q'(\gamma) = 0$ yields the minimum $\gamma = \frac{R}{B\sqrt{T}}$, and $q(R/(B\sqrt{T})) = RB\sqrt{T}$.
- Dividing by T, the result follows.

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps III

$$T \geq \frac{R^2 B^2}{\varepsilon^2} \quad \Rightarrow \quad \text{average error} \ \leq \frac{RB}{\sqrt{T}} \leq \varepsilon.$$

Advantages:

- dimension-independent (no d in the bound)!
- holds for both average, or best iterate

In Practice:

What if we don't know R and $B? \rightarrow \text{Exercise 16}$ (having to know R can't be avoided)

Smooth functions

"Not too curved"

Definition

Let $f : \mathbf{dom}(f) \to \mathbb{R}$ be differentiable, $X \subseteq \mathbf{dom}(f)$, $L \in \mathbb{R}_+$. f is called smooth (with parameter L) over X if

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.$$

 $f \text{ smooth } :\Leftrightarrow f \text{ smooth over } \mathbb{R}^d.$

Definition does not require convexity (useful later)

Smooth functions II

Smoothness: For any x, the graph of f is below a not /too steep tangent paraboloid at $(\mathbf{x}, f(\mathbf{x}))$:

Smooth functions III

- ► In general: quadratic functions are smooth (Exercise 14).
- Operations that preserve smoothness (the same that preserve convexity):

Lemma (Exercise 17)

- (i) Let f_1, f_2, \ldots, f_m be functions that are smooth with parameters L_1, L_2, \ldots, L_m , and let $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}_+$. Then the function $f := \sum_{i=1}^m \lambda_i f_i$ is smooth with parameter $\sum_{i=1}^m \lambda_i L_i$.
- (ii) Let f be smooth with parameter L, and let $g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, for $A \in \mathbb{R}^{d \times m}$ and $\mathbf{b} \in \mathbb{R}^d$. Then the function $f \circ g$ is smooth with parameter $L ||A||^2$, where is ||A|| is the spectral norm of A (Definition 1.2).

Smooth vs Lipschitz

- Bounded gradients \Leftrightarrow Lipschitz continuity of f
- Smoothness \Leftrightarrow Lipschitz continuity of ∇f (in the convex case).

Lemma

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable. The following two statements are equivalent.

Proof in lecture slides of L. Vandenberghe, http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.

Sufficient decrease

Lemma

Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable and smooth with parameter L. With stepsize

$$\gamma := \frac{1}{L},$$

gradient descent satisfies

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Remark

More specifically, this already holds if f is smooth with parameter L over the line segment connecting \mathbf{x}_t and \mathbf{x}_{t+1} .

Sufficient decrease II

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2.$$

Proof.

Use smoothness and definition of gradient descent $(\mathbf{x}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L)$:

$$\begin{aligned} f(\mathbf{x}_{t+1}) &\leq f(\mathbf{x}_{t}) + \nabla f(\mathbf{x}_{t})^{\top} (\mathbf{x}_{t+1} - \mathbf{x}_{t}) + \frac{L}{2} \|\mathbf{x}_{t} - \mathbf{x}_{t+1}\|^{2} \\ &= f(\mathbf{x}_{t}) - \frac{1}{L} \|\nabla f(\mathbf{x}_{t})\|^{2} + \frac{1}{2L} \|\nabla f(\mathbf{x}_{t})\|^{2} \\ &= f(\mathbf{x}_{t}) - \frac{1}{2L} \|\nabla f(\mathbf{x}_{t})\|^{2}. \end{aligned}$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps

Theorem

Let $f : \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum \mathbf{x}^* ; furthermore, suppose that f is smooth with parameter L. Choosing stepsize

$$\gamma := \frac{1}{L},$$

gradient descent yields

$$f(\mathbf{x}_T) - f(\mathbf{x}^{\star}) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2, \quad T > 0.$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps II

$$f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.$$

Proof.

Vanilla Analysis II:

$$\sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \le \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.$$

This time, we can bound the squared gradients by sufficient decrease:

$$\frac{1}{2L}\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le \sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}_{t+1})) = f(\mathbf{x}_0) - f(\mathbf{x}_T).$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps III

Putting it together with $\gamma = 1/L$:

$$\begin{split} \sum_{t=0}^{T-1} \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) &\leq \quad \frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2 \\ &\leq \quad f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2. \end{split}$$

Rewriting:

$$\sum_{t=1}^{T} \left(f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \right) \le \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$$

As last iterate is the best (sufficient decrease!):

$$f(\mathbf{x}_T) - f(\mathbf{x}^{\star}) \le \frac{1}{T} \left(\sum_{t=1}^T \left(f(\mathbf{x}_t) - f(\mathbf{x}^{\star}) \right) \right) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.$$

EPFL Optimization for Machine Learning CS-439

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps IV

$$R^2 := \|\mathbf{x}_0 - \mathbf{x}^\star\|^2.$$

$$T \geq rac{R^2 L}{2arepsilon} \quad \Rightarrow \quad ext{ error } \leq rac{L}{2T} R^2 \leq arepsilon.$$

• $50 \cdot R^2 L$ iterations for error $0.01 \ldots$

 \blacktriangleright . . . as opposed to $10,000\cdot R^2B^2$ in the Lipschitz case

In Practice:

What if we don't know the smoothness parameter L?

\rightarrow Exercise 18