
Optimization for Machine Learning

CS-439

Lecture 2: Gradient Descent

Nicolas Flammarion

EPFL – github.com/epfml/OptML_course

March 3, 2022

github.com/epfml/OptML_course

Chapter 2

Gradient Descent

EPFL Optimization for Machine Learning CS-439 2/22

The Algorithm

Get near to a minimum x? / close to the optimal value f(x?)?
(Assumptions: f : Rd ! R convex, di↵erentiable, has a global minimum x?)

Goal: Find x 2 Rd such that
f(x)� f(x?)  ".

Note that there can be several global minima x?
1 6= x?

2 with f(x?
1) = f(x?

2).

Iterative Algorithm: choose x0 2 R
d.

xt+1 := xt � �rf(xt),

for timesteps t = 0, 1, . . . , and stepsize � � 0.

EPFL Optimization for Machine Learning CS-439 3/22

Example

x0

x1

x2

x3
x4 x5

x1

x2

4

3

f(x1, x2) := 2(x1 � 4)2 + 3(x2 � 3)2,x0 := (0, 0), � := 0.1

EPFL Optimization for Machine Learning CS-439 4/22

Intuition

EPFL Optimization for Machine Learning CS-439 5/22

locally fcztr/ f(x) + Oycnr + OCUV)
-v is a descent direction if Oganv = 0

- How r? min viogns v =-hin↓VII = 1

· I grad: yet varying life
a square

·a grad: Einein
with convexity: T(us jcy) > 0((n)(e-y) =0 f(n)· T(no) =-0T(m)(x)

*anosinitation=rate of decrease of distance to the

optimum is lowerbounded by the up optimality gap

Continuous-time analysis

EPFL Optimization for Machine Learning CS-439 6/22

dxct) =-0YKC) Gradient flow
-Not implementable but only for the analysis
- xx -xa =(x(- x)

+ i

ECUC-septOtencore
=J(x(t)) - f(x) = - (x(1 -21)

tSinal-JouDdx=(1x(0) -x51
- (12).R01

Z
->ensem

-(5) - (n) =J(x()
- Jon**11x(0) - xxN

x -jj2c)dt f(x) - jxx) = ilx(), nM OCE rate!

Intuition for the discretization error

EPFL Optimization for Machine Learning CS-439 7/22

of is running Go with step size at
After tsteps on will be close from of at time

t = TO

x+vx(+) yEx) - f(x) - IRN
*O

EX: x- (x)

-5) -0 need lipschity assumption on f
i lie gradients are bounded

#

f (0g(n)1) = 5

IC -

Tenil:Isimply doesn

Vanilla analysis

How to bound f(xt)� f(x?) ?

I Abbreviate gt := rf(xt) (gradient descent: gt = (xt � xt+1)/�).

g>
t (xt � x?) =

1

�
(xt � xt+1)

>(xt � x?).

I Apply 2v>w = kvk2 + kwk
2
� kv�wk

2 to rewrite

g>
t (xt�x?) =

1

2�

�
kxt�xt+1k

2 + kxt�x?
k
2
� kxt+1�x?

k
2
�

=
�

2
kgtk

2 +
1

2�

�
kxt�x?

k
2
� kxt+1�x?

k
2
�

I Sum this up over the first T iterations:

T�1X

t=0

g>
t (xt�x?) =

�

2

T�1X

t=0

kgtk
2 +

1

2�

�
kx0�x?

k
2
� kxT�x?

k
2
�

EPFL Optimization for Machine Learning CS-439 8/22

Vanilla analysis II

Use first-order characterization of convexity: f(y) � f(x) +rf(x)>(y � x), 8x,y

I with x = xt,y = x?:
f(xt)� f(x?)  g>

t (xt � x?)

giving
T�1X

t=0

�
f(xt)� f(x?)

�


�

2

T�1X

t=0

kgtk
2 +

1

2�
kx0 � x?

k
2,

an upper bound for the average error f(xt)� f(x?) over the steps

I last iterate is not necessarily the best one

I stepsize is crucial

EPFL Optimization for Machine Learning CS-439 9/22

Lipschitz convex functions: O(1/"2) steps
Assume that all gradients of f are bounded in norm.

I Equivalent to f being Lipschitz (Theorem 1.9; Exercise 12).
I Rules out many interesting functions (for example, the “supermodel” f(x) = x2)

Theorem

Let f : Rd
! R be convex and di↵erentiable with a global minimum x?; furthermore,

suppose that kx0 � x?
k  R and krf(x)k  B for all x. Choosing the stepsize

� :=
R

B
p
T
,

gradient descent yields

1

T

T�1X

t=0

f(xt)� f(x?) 
RB
p
T
.

EPFL Optimization for Machine Learning CS-439 10/22

Lipschitz convex functions: O(1/"2) steps II

Proof.

I Plug kx0 � x?
k  R and kgtk  B into Vanilla Analysis II:

T�1X

t=0

(f(xt)� f(x?)) 
�

2

T�1X

t=0

kgtk
2 +

1

2�
kx0 � x?

k
2


�

2
B2T +

1

2�
R2.

I choose � such that

q(�) =
�

2
B2T +

R2

2�

is minimized.

I Solving q0(�) = 0 yields the minimum � = R
B
p
T
, and q(R/(B

p
T)) = RB

p
T .

I Dividing by T , the result follows.

EPFL Optimization for Machine Learning CS-439 11/22

Lipschitz convex functions: O(1/"2) steps III

T �
R2B2

"2
) average error 

RB
p
T

 ".

Advantages:

I dimension-independent (no d in the bound)!

I holds for both average, or best iterate

In Practice:
What if we don’t know R and B? ! Exercise 16 (having to know R can’t be avoided)

EPFL Optimization for Machine Learning CS-439 12/22

Smooth functions

“Not too curved”

Definition

Let f : dom(f) ! R be di↵erentiable, X ✓ dom(f), L 2 R+. f is called smooth
(with parameter L) over X if

f(y)  f(x) +rf(x)>(y � x) +
L

2
kx� yk2, 8x,y 2 X.

f smooth :, f smooth over Rd.

Definition does not require convexity (useful later)

EPFL Optimization for Machine Learning CS-439 13/22

Smooth functions II

Smoothness: For any x, the graph of f is below a not too steep tangent paraboloid at
(x, f(x)):

x y

f(y)

f(x) +rf(x)>(y � x)

f(x) +rf(x)>(y � x) + L
2 kx� yk2

EPFL Optimization for Machine Learning CS-439 14/22

Smooth functions III

I In general: quadratic functions are smooth (Exercise 14).

I Operations that preserve smoothness (the same that preserve convexity):

Lemma (Exercise 17)

(i) Let f1, f2, . . . , fm be functions that are smooth with parameters L1, L2, . . . , Lm,
and let �1,�2, . . . ,�m 2 R+. Then the function f :=

Pm
i=1 �ifi is smooth with

parameter
Pm

i=1 �iLi.

(ii) Let f be smooth with parameter L, and let g(x) = Ax+ b, for A 2 Rd⇥m and
b 2 Rd. Then the function f � g is smooth with parameter LkAk

2, where is kAk
is the spectral norm of A (Definition 1.2).

EPFL Optimization for Machine Learning CS-439 15/22

Smooth vs Lipschitz

I Bounded gradients , Lipschitz continuity of f

I Smoothness , Lipschitz continuity of rf (in the convex case).

Lemma

Let f : Rd
! R be convex and di↵erentiable. The following two statements are

equivalent.

(i) f is smooth with parameter L.

(ii) krf(x)�rf(y)k  Lkx� yk for all x,y 2 Rd.

Proof in lecture slides of L. Vandenberghe, http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf.

EPFL Optimization for Machine Learning CS-439 16/22

http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf

Su�cient decrease

Lemma

Let f : Rd
! R be di↵erentiable and smooth with parameter L. With stepsize

� :=
1

L
,

gradient descent satisfies

f(xt+1)  f(xt)�
1

2L
krf(xt)k

2, t � 0.

Remark

More specifically, this already holds if f is smooth with parameter L over the line
segment connecting xt and xt+1.

EPFL Optimization for Machine Learning CS-439 17/22

Su�cient decrease II

f(xt+1)  f(xt)�
1

2L
krf(xt)k

2.

Proof.

Use smoothness and definition of gradient descent (xt+1 � xt = �rf(xt)/L):

f(xt+1)  f(xt) +rf(xt)
>(xt+1 � xt) +

L

2
kxt � xt+1k

2

= f(xt)�
1

L
krf(xt)k

2 +
1

2L
krf(xt)k

2

= f(xt)�
1

2L
krf(xt)k

2.

EPFL Optimization for Machine Learning CS-439 18/22

Smooth convex functions: O(1/") steps

Theorem

Let f : Rd
! R be convex and di↵erentiable with a global minimum x?; furthermore,

suppose that f is smooth with parameter L. Choosing stepsize

� :=
1

L
,

gradient descent yields

f(xT)� f(x?) 
L

2T
kx0 � x?

k
2, T > 0.

EPFL Optimization for Machine Learning CS-439 19/22

Smooth convex functions: O(1/") steps II

f(xT)� f(x?) 
L

2T
kx0 � x?

k
2, T > 0.

Proof.

Vanilla Analysis II:

T�1X

t=0

�
f(xt)� f(x?)

�


�

2

T�1X

t=0

krf(xt)k
2 +

1

2�
kx0 � x?

k
2.

This time, we can bound the squared gradients by su�cient decrease:

1

2L

T�1X

t=0

krf(xt)k
2


T�1X

t=0

(f(xt)� f(xt+1)) = f(x0)� f(xT).

EPFL Optimization for Machine Learning CS-439 20/22

Smooth convex functions: O(1/") steps III

Putting it together with � = 1/L:

T�1X

t=0

(f(xt)� f(x?)) 
1

2L

T�1X

t=0

krf(xt)k
2 +

L

2
kx0 � x?

k
2

 f(x0)� f(xT) +
L

2
kx0 � x?

k
2.

Rewriting:
TX

t=1

(f(xt)� f(x?)) 
L

2
kx0 � x?

k
2.

As last iterate is the best (su�cient decrease!):

f(xT)� f(x?) 
1

T

TX

t=1

(f(xt)� f(x?))

!


L

2T
kx0 � x?

k
2.

EPFL Optimization for Machine Learning CS-439 21/22

Smooth convex functions: O(1/") steps IV

R2 := kx0 � x?
k
2.

T �
R2L

2"
) error 

L

2T
R2

 ".

I 50 ·R2L iterations for error 0.01 . . .

I . . . as opposed to 10, 000 ·R2B2 in the Lipschitz case

In Practice:
What if we don’t know the smoothness parameter L?

! Exercise 18

EPFL Optimization for Machine Learning CS-439 22/22

	The algorithm

