Optimization for Machine Learning CS-439

Lecture 2: Gradient Descent

Nicolas Flammarion

EPFL – github.com/epfml/OptML_course

March 3, 2022

Chapter 2

Gradient Descent

The Algorithm

Get near to a minimum x^* / close to the optimal value $f(x^*)$? (Assumptions: $f : \mathbb{R}^d \to \mathbb{R}$ convex, differentiable, has a global minimum x^*)

Goal: Find $x \in \mathbb{R}^d$ such that

$$
f(\mathbf{x}) - f(\mathbf{x}^*) \leq \varepsilon.
$$

Note that there can be several global minima $\mathbf{x}_1^* \neq \mathbf{x}_2^*$ with $f(\mathbf{x}_1^*) = f(\mathbf{x}_2^*)$.

Iterative Algorithm: choose $x_0 \in \mathbb{R}^d$.

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - \gamma \nabla f(\mathbf{x}_t),
$$

for **timesteps** $t = 0, 1, \ldots$, and **stepsize** $\gamma \geq 0$.

Intuition locally
\n
$$
V \rightarrow a \text{ descant} \quad \text{divcclion} \quad V \rightarrow \text{Ufcn}^T V + O CNW^2
$$
\n
$$
\rightarrow \text{flow } V
$$
\n
$$
\rightarrow \text{Gy} \quad \text{Gy} \quad
$$

Continuous-time analysis

$$
\frac{d}{dt}\mathbf{X}(t) = -\mathbf{U}f(x(t))
$$
\n
$$
\frac{d}{dt}\mathbf{X}(t) = -\mathbf{U}f(x(t))
$$
\n
$$
= -\mathbf{U
$$

Intuition for the discretization error

\n6F is running 6D with step size dt

\nAfter T steps 6D will be close from 6F of time 25T8

\n
$$
X_T
$$
 w Z CTS) $f(X_T) = fCx$ $\sim \frac{1}{2} \frac{11x - 2x}{T}$

\nEx:

\n
$$
\frac{x \mapsto \text{trx}}{x \cdot \overline{x}} \implies \text{need } \text{Lipschitz } \text{essumption out } f
$$
\nIf lllycn $\text{ll} \leq S$

\n
$$
f(\overline{x}_T) = fCx
$$
 $\Rightarrow \text{need } \text{Lipschitz } \text{essumption out } f$ \n
$$
f(\overline{x}_T) = fCx
$$
 $\Rightarrow \text{read } \text{Lipschitz } \text{dissampling } \text{and } \text{dissolution}$ \n
$$
\frac{f(\overline{x}_T) - fCx}{\overline{x}_T} = \frac{1}{T} \frac{||x - x_x||^2}{T} + \frac{\delta B^2}{\text{error } \text{form } \text{to } \text{disscribed}}
$$
\n
$$
\leq \frac{||x - x_x||^2}{T} \qquad \text{for} \qquad \delta = \frac{||x - x_x||}{B}
$$

Vanilla analysis

How to bound $f(\mathbf{x}_t) - f(\mathbf{x}^*)$?

Abbreviate $\mathbf{g}_t := \nabla f(\mathbf{x}_t)$ (gradient descent: $\mathbf{g}_t = (\mathbf{x}_t - \mathbf{x}_{t+1})/\gamma$).

$$
\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}) = \frac{1}{\gamma}(\mathbf{x}_t - \mathbf{x}_{t+1})^{\top}(\mathbf{x}_t - \mathbf{x}^{\star}).
$$

$$
\mathbf{Apply } 2\mathbf{v}^{\top}\mathbf{w} = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2 \text{ to rewrite}
$$

\n
$$
\mathbf{g}_t^{\top}(\mathbf{x}_t - \mathbf{x}^*) = \frac{1}{2\gamma} (\|\mathbf{x}_t - \mathbf{x}_{t+1}\|^2 + \|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2)
$$

\n
$$
= \frac{\gamma}{2} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} (\|\mathbf{x}_t - \mathbf{x}^*\|^2 - \|\mathbf{x}_{t+1} - \mathbf{x}^*\|^2)
$$

 \blacktriangleright Sum this up over the first *T* iterations:

$$
\sum_{t=0}^{T-1} \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^\star) = \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\mathbf{g}_t||^2 + \frac{1}{2\gamma} (||\mathbf{x}_0 - \mathbf{x}^\star||^2 - ||\mathbf{x}_T - \mathbf{x}^\star||^2)
$$

EPFL Optimization for Machine Learning CS-439 8/22

Vanilla analysis II

Use first-order characterization of convexity: $f(y) \ge f(x) + \nabla f(x)^\top (y - x)$ *,* $\forall x, y$

$$
\triangleright \text{ with } \mathbf{x} = \mathbf{x}_t, \mathbf{y} = \mathbf{x}^* \colon f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \mathbf{g}_t^\top (\mathbf{x}_t - \mathbf{x}^*)
$$

giving

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^{\star})) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} ||\mathbf{g}_t||^2 + \frac{1}{2\gamma} ||\mathbf{x}_0 - \mathbf{x}^{\star}||^2,
$$

an upper bound for the average error $f(\mathbf{x}_t) - f(\mathbf{x}^*)$ over the steps

 \blacktriangleright last iterate is not necessarily the best one

 \blacktriangleright stepsize is crucial

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps

Assume that all gradients of *f* are bounded in norm.

- ► Equivalent to *f* being Lipschitz (Theorem [1.9;](#page-0-0) Exercise [12](#page-0-0)).
- In Rules out many interesting functions (for example, the "supermodel" $f(x) = x^2$)

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and differentiable with a global minimum x^* ; furthermore, *suppose that* $||\mathbf{x}_0 - \mathbf{x}^*|| \leq R$ *and* $||\nabla f(\mathbf{x})|| \leq B$ *for all* x*. Choosing the stepsize*

$$
\gamma := \frac{R}{B\sqrt{T}},
$$

gradient descent yields

$$
\frac{1}{T}\sum_{t=0}^{T-1}f(\mathbf{x}_t) - f(\mathbf{x}^*) \leq \frac{RB}{\sqrt{T}}.
$$

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps II **Proof**

 \blacktriangleright Plug $\|\mathbf{x}_0 - \mathbf{x}^*\| \leq R$ and $\|\mathbf{g}_t\| \leq B$ into Vanilla Analysis II:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^{\star})) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\mathbf{g}_t\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2 \leq \frac{\gamma}{2} B^2 T + \frac{1}{2\gamma} R^2.
$$

ighthroate γ such that

$$
q(\gamma) = \frac{\gamma}{2}B^2T + \frac{R^2}{2\gamma}
$$

is minimized.

- \blacktriangleright Solving $q'(\gamma) = 0$ yields the minimum $\gamma = \frac{R}{B\sqrt{T}}$, and $q(R/(B\sqrt{T})) = RB\sqrt{T}$.
- \blacktriangleright Dividing by *T*, the result follows.

Lipschitz convex functions: $\mathcal{O}(1/\varepsilon^2)$ steps III

$$
T \geq \frac{R^2 B^2}{\varepsilon^2} \quad \Rightarrow \quad \text{average error } \leq \frac{R B}{\sqrt{T}} \leq \varepsilon.
$$

Advantages:

- \blacktriangleright dimension-independent (no d in the bound)!
- \triangleright holds for both average, or best iterate

In Practice:

What if we don't know R and B ? \rightarrow **Exercise [16](#page-0-0)** (having to know R can't be avoided)

Smooth functions

"Not too curved"

Definition

Let $f : dom(f) \to \mathbb{R}$ be differentiable, $X \subseteq dom(f)$, $L \in \mathbb{R}_+$. *f* is called smooth (with parameter *L*) over *X* if

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \nabla f(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.
$$

f smooth : \Leftrightarrow *f* smooth over \mathbb{R}^d .

Definition does not require convexity (useful later)

Smooth functions II

Smoothness: For any x, the graph of *f* is below a not too steep tangent paraboloid at $(\mathbf{x}, f(\mathbf{x}))$:

EPFL Optimization for Machine Learning CS-439 14/22

Smooth functions III

- In general: quadratic functions are smooth (Exercise [14](#page-0-0)).
- \triangleright Operations that preserve smoothness (the same that preserve convexity):

Lemma (Exercise [17\)](#page-0-0)

- (i) Let f_1, f_2, \ldots, f_m be functions that are smooth with parameters L_1, L_2, \ldots, L_m , and let $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}_+$. Then the function $f := \sum_{i=1}^m \lambda_i f_i$ is smooth with *parameter* $\sum_{i=1}^m \lambda_i L_i$ *.*
- (ii) Let *f* be smooth with parameter *L*, and let $g(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$, for $A \in \mathbb{R}^{d \times m}$ and $\mathbf{b} \in \mathbb{R}^d$. Then the function $f \circ g$ is smooth with parameter $L||A||^2$, where is $||A||$ *is the* spectral norm *of A (Definition [1.2\)](#page-0-0).*

Smooth vs Lipschitz

- \blacktriangleright Bounded gradients \Leftrightarrow Lipschitz continuity of *f*
- **Smoothness** \Leftrightarrow Lipschitz continuity of ∇f (in the convex case).

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ *be convex and differentiable. The following two statements are equivalent.*

\n- (i)
$$
f
$$
 is smooth with parameter L .
\n- (ii) $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.
\n

Proof in lecture slides of L. Vandenberghe, <http://www.seas.ucla.edu/~vandenbe/236C/lectures/gradient.pdf>.

Sufficient decrease

Lemma

Let $f: \mathbb{R}^d \to \mathbb{R}$ *be differentiable and smooth with parameter L. With stepsize*

$$
\gamma:=\frac{1}{L},
$$

gradient descent satisfies

$$
f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.
$$

Remark

More specifically, this already holds if f is smooth with parameter L over the line segment connecting x_t *and* x_{t+1} *.*

Sufficient decrease II

$$
f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2.
$$

Proof.

Use smoothness and definition of gradient descent $(\mathbf{x}_{t+1} - \mathbf{x}_t = -\nabla f(\mathbf{x}_t)/L)$:

$$
f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^\top (\mathbf{x}_{t+1} - \mathbf{x}_t) + \frac{L}{2} ||\mathbf{x}_t - \mathbf{x}_{t+1}||^2
$$

= $f(\mathbf{x}_t) - \frac{1}{L} ||\nabla f(\mathbf{x}_t)||^2 + \frac{1}{2L} ||\nabla f(\mathbf{x}_t)||^2$
= $f(\mathbf{x}_t) - \frac{1}{2L} ||\nabla f(\mathbf{x}_t)||^2.$

 \Box

Smooth convex functions: $O(1/\varepsilon)$ steps

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ *be convex and differentiable with a global minimum* x^* *; furthermore, suppose that f is smooth with parameter L. Choosing stepsize*

$$
\gamma:=\frac{1}{L},
$$

gradient descent yields

$$
f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} \|\mathbf{x}_0 - \mathbf{x}^*\|^2, \quad T > 0.
$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps II

$$
f(\mathbf{x}_T) - f(\mathbf{x}^*) \le \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2, \quad T > 0.
$$

Proof.

Vanilla Analysis II:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^{\star})) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{1}{2\gamma} \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.
$$

This time, we can bound the squared gradients by sufficient decrease:

$$
\frac{1}{2L}\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \leq \sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}_{t+1})) = f(\mathbf{x}_0) - f(\mathbf{x}_T).
$$

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ steps III

Putting it together with $\gamma = 1/L$:

$$
\sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}^*)) \leq \frac{1}{2L} \sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2
$$

$$
\leq f(\mathbf{x}_0) - f(\mathbf{x}_T) + \frac{L}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2.
$$

Rewriting:

$$
\sum_{t=1}^T \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \leq \frac{L}{2} ||\mathbf{x}_0 - \mathbf{x}^*||^2.
$$

As last iterate is the best (sufficient decrease!):

$$
f(\mathbf{x}_T) - f(\mathbf{x}^*) \leq \frac{1}{T} \left(\sum_{t=1}^T \left(f(\mathbf{x}_t) - f(\mathbf{x}^*) \right) \right) \leq \frac{L}{2T} ||\mathbf{x}_0 - \mathbf{x}^*||^2.
$$

EPFL Optimization for Machine Learning CS-439 21/22

Smooth convex functions: $\mathcal{O}(1/\varepsilon)$ **steps IV**

$$
R^2 := \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2.
$$

$$
T \geq \frac{R^2 L}{2\varepsilon} \quad \Rightarrow \quad \text{ error } \leq \frac{L}{2T} R^2 \leq \varepsilon.
$$

 \blacktriangleright 50 \cdot R^2L iterations for error 0.01

 \triangleright ... as opposed to $10,000 \cdot R^2B^2$ in the Lipschitz case

In Practice:

What if we don't know the smoothness parameter *L*?

\rightarrow Exercise [18](#page-0-0)