Optimization for Machine Learning in Practice II

Martin Jaggi EPFL

Optimization for ML Course - EPFL - 2nd June 2023

Machine Learning and Optimization Laboratory mlo.epfl.ch

Collaborative Learning

Collaborative & Federated Training

device

⚙

device

⚙

device

⚙

Updates

Data

server or P2P

(recap)

Big Picture

personal data

Google

data

200

2a) Federated Learning

Model Updates

device ⚙

 \bullet

 \bullet

device ⚙

2a) Federated Learning

✤ Local SGD steps = "Federated averaging"

✤ Google Android Keyboard

Client drift

min *x* 1 *n n* ∑ *i f* \int_{i}^{∞} (*x*) ✤ **Federated Learning**

Updates

server

for some local steps
\n
$$
y_i := y_i - \eta \nabla f_i(y_i)
$$
\n
$$
x := \frac{1}{n} \sum_{i=1}^n y_i
$$
 (aggregation)

 x_1

 x^{\star}

✤ **Fed Avg / Local SGD** *x*[⋆]

2

x

x

*y*1

*y*2

Client drift

i (*x*) + *βm*

for some local steps

$m := (1 - \beta) Vf$

aggregated on server after each round

Mime algorithm framework

$y_i := y_i - \eta((1-\beta)\nabla f_i(y_i) + \beta m)$

min $f_1(x)$ *x* min $f_n(x)$ *x* ✤ **Collaborative / Personalized** $min f_0(x)$ *x*

min *x* 1 *n n* ∑ *i f* \int_{i}^{∞} (x) ✤ **Federated**

min $f_1(x)$ *x* min *x* $f_n(x)$ ✤ **Collaborative / Personalized** $min f_0(x)$ *x*

min *x* 1 *n n* ∑ *i f* \int_{i}^{∞} (x) ✤ **Federated**

✤ **Ordering of training** Set of active clients evolves (how?)

✤ **Clients = Tasks**

Sequential fine-tuning Transfer learning, overparameterized models?

✤ **Train alone or collaborate?**

Federated vs Personalized Learning

2c Decentralized Learning

Motivation

✤ **Applications:** any ML system with user data servers, devices, sensors, hospitals, ...

Decentralized ML

Efficiency

Robustness

Required Building Blocks

Communication Compression

✤ limited-bit precision vector

e.g. 1-bit per entry reduces communication 32 times

✤ random/top k% of all the entries

e.g. k=0.1% reduces communication 1000 times

✤ low rank version of the gradient?

backprop is fast: linear time

fast compression?

Fast power iterations

▪ PowerSGD

Low-Rank Communication Compression

• PowerGossip

ning & Optimization Laboratory Machine Learning & Optimization Laboratory Machine

✤ **Efficiency: Communication & Compute** on-device learning, Edge AI peer-to-peer communication

✤ **Privacy**

data locality, leakage?, attacks?

✤ **Robustness & Incentives**

tolerate bad players, reward collaboration

-
-
-

Building Blocks for Decentralized ML

Robustness **During Training and Inference**

3

Gradients from faulty/malicious collaborators: - Byzantine-robust Training

Malicious actors in FL

Unstable Client

Malicious Client

Updates

Unstable Client

$agg({g_i}) := avg({g_i})$:= $CM({g_i})$

Malicious Client

- Coordinate-wise median [Yin et al. 2017]
- Krum [Blanchard et al. 2018]
- Geometric median / RFA [Pillutla et al. 2019]

Byzantine-robust training

Zeno: Byzantine-suspicious stochastic gradient descent, 2018, Cong Xie et al.

✤ **Mean vs median**

Negative result

✤ Robustness of the aggregation rule agg({*gⁱ* })does **not** imply robust training: *time-coupled attacks - "little is enough"*

✤ Any aggregation rule which does not use history can **fail** for training (convergence)

Fix: Using history with momentum

✤ Simply use worker momentum

 $m_i := (1 - \beta)g_i + \beta m_i$

✤ (Robustly) aggregate worker momentum instead of gradients $w := w - \gamma \arg(\{m_i\})$

✤ Effectively averages past gradients, reducing variance

Robustness vs Fairness

Robust mean **Federated Federated Fairness**

robust-mean_i $f_i(x)$ $\qquad \qquad \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ max $f_i(x)$ \int_{i}^{∞} (x)

(*x*) max *i f i*

Objective

Adversarial Attacks (at inference time) 3b

Classifier Input

place sticker on table

Classifier Input

Image: [Tom B. Brown/Dandelion Mané](https://arxiv.org/pdf/1712.09665.pdf)

Classifier Output

Classifier Output

Image: Elsayed , Papernot et al 2018

Adversarial Attacks (at inference time)

" $pig"$

$+0.005x$

Image: Mą[dry, Schmidt](http://gradientscience.org/intro_adversarial/)

"airliner"

More info: http://gradientscience.org/intro_adversarial/

Adversarial Attacks

$$
\nabla_{\boldsymbol{w}}f
$$

$$
\nabla_{\bm{x}_i} f
$$

✤ Standard **training**

✤ **Attacking**

change **model**

change **data**

max **x**∈*R*∞(**x***ⁱ* ,*ε*) *f*

min **w** *f*

✤ by **Projected Gradient Descent!**

4

✤ Secure Multiparty Computation ✤ secure aggregation (private gradients, public model) ✤ Differential Privacy

✤ Privacy/inference Attacks

Leveraging Heterogenous Systems **Compute & Memory Hierarchy: Which data to put in which device?**

5

Leveraging Heterogenous Systems

adaptive importance sampling of datapoint e.g. for general linear models, or word2vec

✤ new **hardware**

✤ TPU, GraphCore, Cerebras

✤ sparse ops

- ✤ efficient numerics (limited precision), model compression
- ✤ **Software** frameworks
	- ✤ AutoGrad (Jax, PyTorch, TensorFlow etc)
	- ✤ Backends for new hardware

Number formats for DL

Practical tricks

✤ **feature hashing** ✤ **limited precision operations**

Auto ML

✤ **hyper-parameter optimization** *zero-order methods*

✤ **learning to learn** *adaptive methods*

✤ **neural architecture search** *zero-order, warm-start*

 $\frac{1}{2}$ Thanks! <u>mlo.epfl.ch</u> [tml.epfl.ch](https://www.epfl.ch/labs/tml/)

