Optimization

for Machine Learning in Practice II

Martin Jaggi

Machine Learning and Optimization Laboratory mlo.epfl.ch

Collaborative Learning

Evolution

Big Picture

Federated Learning

data never leaves device

Federated Learning

- Local SGD steps ="Federated averaging"
- Google AndroidKeyboard

Client drift

* Federated Learning

$$\min_{\mathbf{x}} \frac{1}{n} \sum_{i}^{n} f_i(\mathbf{x})$$

Fed Avg / Local SGD

for some local steps

i=1

$$\mathbf{y}_i := \mathbf{y}_i - \eta \, \nabla f_i(\mathbf{y}_i)$$

$$x := \frac{1}{n} \sum_{i} y_{i}$$
 (aggregation)

Client drift

Mime algorithm framework

for some local steps

$$\mathbf{y}_i := \mathbf{y}_i - \eta \left((1 - \beta) \nabla f_i(\mathbf{y}_i) + \beta \mathbf{m} \right)$$

$$m := (1 - \beta) \nabla f_i(x) + \beta m$$

aggregated on server after each round

2b

Federated vs Personalized Learning

Federated

$$\min_{\mathbf{x}} \frac{1}{n} \sum_{i}^{n} f_i(\mathbf{x})$$

Collaborative / Personalized

2b Federated vs Personalized Learning

Federated

$$\min_{\mathbf{x}} \frac{1}{n} \sum_{i}^{n} f_i(\mathbf{x})$$

Collaborative / Personalized

$$\min_{\mathbf{x}} f_1(\mathbf{x})$$

$$\min_{\mathbf{x}} f_n(\mathbf{x})$$

- Ordering of training Set of active clients evolves (how?)
- Clients = Tasks Sequential fine-tuning Transfer learning, overparameterized models?
- Train alone or collaborate?

2c Decentralized Learning

Motivation

* Applications:

any ML system with user data servers, devices, sensors, hospitals, ...

image source

* Advantages:

AI utility, control and privacy aligned with data ownership

Required Building Blocks

Decentralized Learning

Decentralized Learning

SGD step:

$$\mathbf{x}_{t+\frac{1}{2}}^{i} := \mathbf{x}_{t}^{j} - \gamma_{t} \nabla f_{i_{t}}^{j}(\mathbf{x}_{t}^{j})$$

Average step:
$$x_{t+1}^i := \frac{1}{deg_i}$$

j:neighbours

Communication Compression

limited-bit precision vector

e.g. 1-bit per entry reduces communication 32 times

random/top k% of all the entries

e.g. k=0.1% reduces communication 1000 times

low rank version of the gradient?

Low-Rank Communication Compression

PowerSGD

backprop is fast: linear time

fast compression?

Fast power iterations

Fast power iterations

Layer gradient

Fast power iterations

Fast power iterations G(G) = pG

Decentralized Learning with Compression

PowerGossip

$$p := \frac{1}{2}(M^{(1)} + M^{(2)}) q$$

$$p := \frac{1}{2}(M^{(1)} q + M^{(2)} q)$$

Building Blocks for Decentralized ML

- * Efficiency: Communication & Compute on-device learning, Edge AI peer-to-peer communication
- Privacy
 data locality, leakage?, attacks?
- * Robustness & Incentives tolerate bad players, reward collaboration

3

Robustness

During Training and Inference

Gradients from faulty/malicious collaborators: - Byzantine-robust Training

Malicious actors in FL

Byzantine Robust Training

 $agg(\{\boldsymbol{g}_i\}) := avg(\{\boldsymbol{g}_i\})$

 $:= CM(\{g_i\})$

Examples:

- Coordinate-wise median
 [Yin et al. 2017]
- Krum [Blanchard et al. 2018]
- Geometric median
 / RFA [Pillutla et al. 2019]

Byzantine-robust training

Mean vs median

Negative result

- * Robustness of the aggregation rule $agg(\{g_i\})$ does **not** imply robust training: time-coupled attacks "little is enough"
- Any aggregation rule which does not use history can fail for training (convergence)

Fix: Using history with momentum

Simply use worker momentum

$$\boldsymbol{m}_i := (1 - \beta)\boldsymbol{g}_i + \beta \boldsymbol{m}_i$$

* Effectively averages past gradients, reducing variance

* (Robustly) aggregate worker momentum instead of gradients

$$w := w - \gamma \operatorname{agg}(\{m_i\})$$

Robustness vs Fairness

Robust mean
$robust-mean_i f_i(x)$
$= \frac{1}{ good } \sum_{i \in good} f_i(x)$

$$\frac{1}{2} \sum_{i=1}^{n} f(x_i)$$

Federated

$$\max_{i} f_i(\mathbf{x})$$

Fairness

Adversarial Attacks (at inference time)

Image: Elsayed ,Papernot et al 2018

Adversarial Attacks (at inference time)

More info:

http://gradientscience.org/intro_adversarial/

Adversarial Attacks

Standard training

$$\min_{\mathbf{W}} f_{\mathbf{W}}(\mathbf{X}_i)$$

 $\nabla_{w} f$ change model

* Attacking

$$\max_{\mathbf{x} \in R_{\infty}(\mathbf{x}_i, \varepsilon)} f_{\mathbf{w}}(\mathbf{x}_i)$$

 $abla_{oldsymbol{x}_i} f$ change data

* by Projected Gradient Descent!

Privacy

- Secure Multiparty Computation
 - secure aggregation(private gradients, public model)
- Differential Privacy
- Privacy/inference Attacks

Leveraging Heterogenous Systems

Compute & Memory Hierarchy: Which data to put in which device?

Leveraging Heterogenous Systems

adaptive importance sampling of datapoint e.g. for general linear models, or word2vec

Trends - Systems

- new hardware
 - * TPU, GraphCore, Cerebras
 - sparse ops
 - efficient numerics (limited precision), model compression
- * Software frameworks
 - AutoGrad (Jax, PyTorch, TensorFlow etc)
 - Backends for new hardware

Number formats for DL

Practical tricks

* feature hashing

limited precision operations

Auto ML

- * hyper-parameter optimization zero-order methods
- learning to learn adaptive methods
- * neural architecture search zero-order, warm-start

Thanks!

mlo.epfl.ch tml.epfl.ch