-
Notifications
You must be signed in to change notification settings - Fork 441
/
Copy pathfinetune.py
132 lines (110 loc) · 3.91 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from transformers.integrations import TensorBoardCallback
from torch.utils.tensorboard import SummaryWriter
from transformers import TrainingArguments
from transformers import Trainer, HfArgumentParser
from transformers import AutoTokenizer, AutoModel
from transformers import PreTrainedTokenizerBase
import torch
import torch.nn as nn
from peft import get_peft_model, LoraConfig, TaskType
from dataclasses import dataclass, field
import datasets
import os
@dataclass
class FinetuneArguments:
dataset_path: str = field(default="data/alpaca")
model_path: str = field(default="output")
lora_rank: int = field(default=8)
chatglm_path: str = field(default="model_path/chatglm")
class CastOutputToFloat(nn.Sequential):
def forward(self, x):
return super().forward(x).to(torch.float32)
@dataclass
class DataCollator:
tokenizer: PreTrainedTokenizerBase
def __call__(self, features: list) -> dict:
len_ids = [len(feature["input_ids"]) for feature in features]
longest = max(len_ids)
input_ids = []
labels_list = []
for ids_l, feature in sorted(zip(len_ids, features), key=lambda x: -x[0]):
ids = feature["input_ids"]
seq_len = feature["seq_len"]
labels = (
[-100] * (seq_len - 1)
+ ids[(seq_len - 1) :]
+ [-100] * (longest - ids_l)
)
ids = ids + [self.tokenizer.pad_token_id] * (longest - ids_l)
_ids = torch.LongTensor(ids)
labels_list.append(torch.LongTensor(labels))
input_ids.append(_ids)
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {
"input_ids": input_ids,
"labels": labels,
}
class ModifiedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
return model(
input_ids=inputs["input_ids"],
labels=inputs["labels"],
).loss
def save_model(self, output_dir=None, _internal_call=False):
from transformers.trainer import TRAINING_ARGS_NAME
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
saved_params = {
k: v.to("cpu") for k, v in self.model.named_parameters() if v.requires_grad
}
torch.save(saved_params, os.path.join(output_dir, "adapter_model.bin"))
def main():
writer = SummaryWriter()
finetune_args, training_args = HfArgumentParser(
(FinetuneArguments, TrainingArguments)
).parse_args_into_dataclasses()
# init model
model = AutoModel.from_pretrained(
finetune_args.chatglm_path,
load_in_8bit=True,
trust_remote_code=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(
finetune_args.chatglm_path, trust_remote_code=True
)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.is_parallelizable = True
model.model_parallel = True
# model.lm_head = CastOutputToFloat(model.lm_head)
model.config.use_cache = (
False # silence the warnings. Please re-enable for inference!
)
# setup peft
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetune_args.lora_rank,
lora_alpha=32,
lora_dropout=0.1,
)
model = get_peft_model(model, peft_config)
# load dataset
dataset = datasets.load_from_disk(finetune_args.dataset_path)
print(f"\n{len(dataset)=}\n")
# start train
trainer = ModifiedTrainer(
model=model,
train_dataset=dataset,
args=training_args,
callbacks=[TensorBoardCallback(writer)],
data_collator=DataCollator(tokenizer),
)
trainer.train()
writer.close()
# save model
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()