-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbidiagonalize.py
71 lines (52 loc) · 1.69 KB
/
bidiagonalize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
from householder import householder
def bidiagonalize(A):
m, n = A.shape
if (m < n):
raise ValueError("Matrix must respect shape s.t m >= n, shape (m={m}, n={n}) was given.")
B = A.copy()
P = np.eye(m)
H = np.eye(n)
for k in range(n):
a = B[k:m, k]
P_tilde = np.eye(m)
P_tilde[k:m, k:m] = householder(a)
B = P_tilde @ B
P = P_tilde @ P
if k <= n-3: # usig n-2 one singular value becomes positive
b = B[k, k+1:n]
H_tilde = np.eye(n)
H_tilde[k+1:n, k+1:n] = householder(b)
B = B @ H_tilde
H = H @ H_tilde
return B, P, H
def gk_bidiagonalize():
m, n = A.shape
if (m < n):
raise ValueError("Matrix must respect shape s.t m >= n, shape (m={m}, n={n}) was given.")
B = A.copy()
P = np.eye(m)
H = np.eye(n)
for k in range(n):
a = B[k:m, k]
P_tilde = np.eye(m)
P_tilde[k:m, k:m] = householder(a)
B = P_tilde @ B
P = P_tilde @ P
if k <= n-3: # usig n-2 one singular value becomes positive
b = B[k, k+1:n]
H_tilde = np.eye(n)
H_tilde[k+1:n, k+1:n] = householder(b)
B = B @ H_tilde
H = H @ H_tilde
return B, P, H
if __name__ == "__main__":
# Test the bidiagonalize function with a sample matrix
A = np.array([[4, 1, 3], [2, 6, 5], [1, 2, 3], [5, 4, 2]])
print("\nOriginal matrix A:")
print(A)
B, P, H = bidiagonalize(A)
print("\nBidiagonalized matrix B:")
print(np.round(B, decimals=8))
print("\nP @ A @ H == B? ", np.allclose(P @ A @ H, B, atol=1e-8))
print()