-
Notifications
You must be signed in to change notification settings - Fork 101
/
evaluation_res_duke_fast.m
108 lines (93 loc) · 4.2 KB
/
evaluation_res_duke_fast.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
clc;clear all;close all;
addpath CM_Curve
rank_size = 4000;
im_mean = net.meta.normalization.averageImage;
im_mean = imresize(im_mean,[224,224]);
%% add necessary paths
query_dir = '/data/uts521/zzd/DukeMTMC/query/';% query directory
test_dir = '/data/uts521/zzd/DukeMTMC/bounding_box_test/';% database directory
%% calculate query features
Hist_query = importdata('../test_duke/resnet_query.mat')';
nQuery = size(Hist_query, 2);
%% calculate database features
Hist_test = importdata('../test_duke/resnet_gallery.mat')';
nTest = size(Hist_test, 2);
%% calculate the ID and camera for database images
test_files = dir([test_dir '*.jpg']);
testID = zeros(length(test_files), 1);
testCAM = zeros(length(test_files), 1);
if ~exist('data/testID_duke.mat')
for n = 1:length(test_files)
img_name = test_files(n).name;
if strcmp(img_name(1), '-') % junk images
testID(n) = -1;
testCAM(n) = str2num(img_name(5));
else
%img_name
testID(n) = str2num(img_name(1:4));
testCAM(n) = str2num(img_name(7));
end
end
save('data/testID_duke.mat', 'testID');
save('data/testCAM_duke.mat', 'testCAM');
else
testID = importdata('data/testID_duke.mat');
testCAM = importdata('data/testCAM_duke.mat');
end
%% calculate the ID and camera for query images
query_files = dir([query_dir '*.jpg']);
queryID = zeros(length(query_files), 1);
queryCAM = zeros(length(query_files), 1);
if ~exist('data/queryID_duke.mat')
for n = 1:length(query_files)
img_name = query_files(n).name;
if strcmp(img_name(1), '-') % junk images
queryID(n) = -1;
queryCAM(n) = str2num(img_name(5));
else
queryID(n) = str2num(img_name(1:4));
queryCAM(n) = str2num(img_name(7));
end
end
save('data/queryID_duke.mat', 'queryID');
save('data/queryCAM_duke.mat', 'queryCAM');
else
queryID = importdata('data/queryID_duke.mat');
queryCAM = importdata('data/queryCAM_duke.mat');
end
%% search the database and calcuate re-id accuracy
ap = zeros(nQuery, 1); % average precision
ap_max_rerank = zeros(nQuery, 1); % average precision with MultiQ_max + re-ranking
ap_pairwise = zeros(nQuery, 6); % pairwise average precision with single query (see Fig. 7 in the paper)
CMC = zeros(nQuery, rank_size);
CMC_max_rerank = zeros(nQuery, rank_size);
r1 = 0; % rank 1 precision with single query
r1_max_rerank = 0; % rank 1 precision with MultiQ_max + re-ranking
r1_pairwise = zeros(nQuery, 6);% pairwise rank 1 precision with single query (see Fig. 7 in the paper)
dist = sqdist(Hist_test, Hist_query); % distance calculate with single query. Note that Euclidean distance is equivalent to cosine distance if vectors are l2-normalized
%dist_cos_max = (2-dist_max)./2; % cosine distance with MultiQ_max, used for re-ranking
knn = 1; % number of expanded queries. knn = 1 yields best result
for k = 1:nQuery
% load ground truth for each query (good and junk)
good_index = intersect(find(testID == queryID(k)), find(testCAM ~= queryCAM(k)))';% images with the same ID but different camera from the query
junk_index1 = find(testID == -1);% images neither good nor bad in terms of bbox quality
junk_index2 = intersect(find(testID == queryID(k)), find(testCAM == queryCAM(k))); % images with the same ID and the same camera as the query
junk_index = [junk_index1; junk_index2]';
score = dist(:, k);
% sort database images according Euclidean distance
[~, index] = sort(score, 'ascend'); % single query
% re-rank select rank_size=1000 index
index = index(1:rank_size);
[ap(k), CMC(k, :)] = compute_AP_rerank(good_index, junk_index, index);% compute AP for single query
fprintf('%d::%f\n',k,ap(k));
end
CMC = mean(CMC);
%% print result
fprintf('single query: mAP = %f, r1 precision = %f\r\n', mean(ap), CMC(1));
%[ap_CM, r1_CM] = draw_confusion_matrix(ap_pairwise, r1_pairwise, queryCam);
%fprintf('average of confusion matrix with single query: mAP = %f, r1 precision = %f\r\n', (sum(ap_CM(:))-sum(diag(ap_CM)))/30, (sum(r1_CM(:))-sum(diag(r1_CM)))/30);
%% plot CMC curves
figure;
s = 50;
CMC_curve = CMC ;
plot(1:s, CMC_curve(:, 1:s));