forked from meituan/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
116 lines (102 loc) · 4.93 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import argparse
import os
import sys
import os.path as osp
import torch
ROOT = os.getcwd()
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from yolov6.utils.events import LOGGER
from yolov6.core.inferer import Inferer
def get_args_parser(add_help=True):
parser = argparse.ArgumentParser(description='YOLOv6 PyTorch Inference.', add_help=add_help)
parser.add_argument('--weights', type=str, default='weights/yolov6s.pt', help='model path(s) for inference.')
parser.add_argument('--source', type=str, default='data/images', help='the source path, e.g. image-file/dir.')
parser.add_argument('--yaml', type=str, default='data/coco.yaml', help='data yaml file.')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='the image-size(h,w) in inference size.')
parser.add_argument('--conf-thres', type=float, default=0.4, help='confidence threshold for inference.')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold for inference.')
parser.add_argument('--max-det', type=int, default=1000, help='maximal inferences per image.')
parser.add_argument('--device', default='0', help='device to run our model i.e. 0 or 0,1,2,3 or cpu.')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt.')
parser.add_argument('--not-save-img', action='store_true', help='do not save visuallized inference results.')
parser.add_argument('--save-dir', type=str, help='directory to save predictions in. See --save-txt.')
parser.add_argument('--view-img', action='store_true', help='show inference results')
parser.add_argument('--classes', nargs='+', type=int, help='filter by classes, e.g. --classes 0, or --classes 0 2 3.')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS.')
parser.add_argument('--project', default='runs/inference', help='save inference results to project/name.')
parser.add_argument('--name', default='exp', help='save inference results to project/name.')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels.')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences.')
parser.add_argument('--half', action='store_true', help='whether to use FP16 half-precision inference.')
args = parser.parse_args()
LOGGER.info(args)
return args
@torch.no_grad()
def run(weights=osp.join(ROOT, 'yolov6s.pt'),
source=osp.join(ROOT, 'data/images'),
yaml=None,
img_size=640,
conf_thres=0.4,
iou_thres=0.45,
max_det=1000,
device='',
save_txt=False,
not_save_img=False,
save_dir=None,
view_img=True,
classes=None,
agnostic_nms=False,
project=osp.join(ROOT, 'runs/inference'),
name='exp',
hide_labels=False,
hide_conf=False,
half=False,
):
""" Inference process, supporting inference on one image file or directory which containing images.
Args:
weights: The path of model.pt, e.g. yolov6s.pt
source: Source path, supporting image files or dirs containing images.
yaml: Data yaml file, .
img_size: Inference image-size, e.g. 640
conf_thres: Confidence threshold in inference, e.g. 0.25
iou_thres: NMS IOU threshold in inference, e.g. 0.45
max_det: Maximal detections per image, e.g. 1000
device: Cuda device, e.e. 0, or 0,1,2,3 or cpu
save_txt: Save results to *.txt
not_save_img: Do not save visualized inference results
classes: Filter by class: --class 0, or --class 0 2 3
agnostic_nms: Class-agnostic NMS
project: Save results to project/name
name: Save results to project/name, e.g. 'exp'
line_thickness: Bounding box thickness (pixels), e.g. 3
hide_labels: Hide labels, e.g. False
hide_conf: Hide confidences
half: Use FP16 half-precision inference, e.g. False
"""
# create save dir
if save_dir is None:
save_dir = osp.join(project, name)
save_txt_path = osp.join(save_dir, 'labels')
else:
save_txt_path = save_dir
if (not not_save_img or save_txt) and not osp.exists(save_dir):
os.makedirs(save_dir)
else:
LOGGER.warning('Save directory already existed')
if save_txt:
save_txt_path = osp.join(save_dir, 'labels')
if not osp.exists(save_txt_path):
os.makedirs(save_txt_path)
# Inference
inferer = Inferer(source, weights, device, yaml, img_size, half)
inferer.infer(conf_thres, iou_thres, classes, agnostic_nms, max_det, save_dir, save_txt, not not_save_img, hide_labels, hide_conf, view_img)
if save_txt or not not_save_img:
LOGGER.info(f"Results saved to {save_dir}")
def main(args):
run(**vars(args))
if __name__ == "__main__":
args = get_args_parser()
main(args)