-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
110 lines (77 loc) · 4.39 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from keras import layers
from keras.models import Sequential
def convlstm_model(SEQUENCE_LENGTH, IMAGE_SIZE, CLASSES_LIST):
'''
This function will construct the required convlstm model.
Returns:
model: It is the required constructed convlstm model.
'''
# We will use a Sequential model for model construction
model = Sequential()
# Define the Model Architecture.
########################################################################################################################
model.add(layers.ConvLSTM2D(filters=4, kernel_size=(3, 3), activation='tanh', data_format="channels_last",
recurrent_dropout=0.2, return_sequences=True, input_shape=(SEQUENCE_LENGTH,
IMAGE_SIZE, IMAGE_SIZE, 3)))
model.add(layers.MaxPooling3D(pool_size=(1, 2, 2),
padding='same', data_format='channels_last'))
model.add(layers.TimeDistributed(layers.Dropout(0.2)))
model.add(layers.ConvLSTM2D(filters=8, kernel_size=(3, 3), activation='tanh', data_format="channels_last",
recurrent_dropout=0.2, return_sequences=True))
model.add(layers.MaxPooling3D(pool_size=(1, 2, 2),
padding='same', data_format='channels_last'))
model.add(layers.TimeDistributed(layers.Dropout(0.2)))
model.add(layers.ConvLSTM2D(filters=14, kernel_size=(3, 3), activation='tanh', data_format="channels_last",
recurrent_dropout=0.2, return_sequences=True))
model.add(layers.MaxPooling3D(pool_size=(1, 2, 2),
padding='same', data_format='channels_last'))
model.add(layers.TimeDistributed(layers.Dropout(0.2)))
model.add(layers.ConvLSTM2D(filters=16, kernel_size=(3, 3), activation='tanh', data_format="channels_last",
recurrent_dropout=0.2, return_sequences=True))
model.add(layers.MaxPooling3D(pool_size=(1, 2, 2),
padding='same', data_format='channels_last'))
# model.add(TimeDistributed(Dropout(0.2)))
model.add(layers.Flatten())
model.add(layers.Dense(len(CLASSES_LIST), activation="softmax"))
########################################################################################################################
# Display the models summary.
model.summary()
# Return the constructed convlstm model.
return model
def LRCN_model(SEQUENCE_LENGTH, IMAGE_SIZE, CLASSES_LIST):
'''
This function will construct the required LRCN model.
Returns:
model: It is the required constructed LRCN model.
'''
# We will use a Sequential model for model construction.
model = Sequential()
# Define the Model Architecture.
########################################################################################################################
model.add(layers.TimeDistributed(layers.Conv2D(16, (3, 3), padding='same', activation='relu'),
input_shape=(SEQUENCE_LENGTH, IMAGE_SIZE, IMAGE_SIZE, 3)))
model.add(layers.TimeDistributed(layers.MaxPooling2D((4, 4))))
model.add(layers.TimeDistributed(layers.Dropout(0.25)))
model.add(layers.TimeDistributed(layers.Conv2D(
32, (3, 3), padding='same', activation='relu')))
model.add(layers.TimeDistributed(layers.MaxPooling2D((4, 4))))
model.add(layers.TimeDistributed(layers.Dropout(0.25)))
model.add(layers.TimeDistributed(layers.Conv2D(
64, (3, 3), padding='same', activation='relu')))
model.add(layers.TimeDistributed(layers.MaxPooling2D((2, 2))))
model.add(layers.TimeDistributed(layers.Dropout(0.25)))
model.add(layers.TimeDistributed(layers.Conv2D(
64, (3, 3), padding='same', activation='relu')))
model.add(layers.TimeDistributed(layers.MaxPooling2D((2, 2))))
model.add(layers.TimeDistributed(layers.Dropout(0.25)))
model.add(layers.TimeDistributed(layers.Flatten()))
model.add(layers.LSTM(64, return_sequences=True))
model.add(layers.LSTM(128))
model.add(layers.Dense(128))
model.add(layers.Dropout(0.25))
model.add(layers.Dense(len(CLASSES_LIST), activation='softmax'))
########################################################################################################################
# Display the models summary.
model.summary()
# Return the constructed LRCN model.
return model