forked from RoyalSkye/Image-Caption
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
executable file
·312 lines (276 loc) · 16.5 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
from torch import nn
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
channel_number = 512
class ScaledDotProductAttention(nn.Module):
def __init__(self, QKVdim):
super(ScaledDotProductAttention, self).__init__()
self.QKVdim = QKVdim
def forward(self, Q, K, V, attn_mask):
"""
:param Q: [batch_size, n_heads, -1(len_q), QKVdim]
:param K, V: [batch_size, n_heads, -1(len_k=len_v), QKVdim]
:param attn_mask: [batch_size, n_heads, len_q, len_k]
"""
# scores: [batch_size, n_heads, len_q, len_k]
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(self.QKVdim)
# Fills elements of self tensor with value where mask is True.
scores.to(device).masked_fill_(attn_mask, -1e9)
attn = nn.Softmax(dim=-1)(scores) # [batch_size, n_heads, len_q, len_k]
context = torch.matmul(attn, V).to(device) # [batch_size, n_heads, len_q, QKVdim]
return context, attn
class Multi_Head_Attention(nn.Module):
def __init__(self, Q_dim, K_dim, QKVdim, n_heads=8, dropout=0.1):
super(Multi_Head_Attention, self).__init__()
self.W_Q = nn.Linear(Q_dim, QKVdim * n_heads).to(device)
self.W_K = nn.Linear(K_dim, QKVdim * n_heads).to(device)
self.W_V = nn.Linear(K_dim, QKVdim * n_heads).to(device)
self.n_heads = n_heads
self.QKVdim = QKVdim
self.embed_dim = Q_dim
self.dropout = nn.Dropout(p=dropout)
self.W_O = nn.Linear(self.n_heads * self.QKVdim, self.embed_dim).to(device)
def forward(self, Q, K, V, attn_mask):
"""
In self-encoder attention:
Q = K = V: [batch_size, num_pixels=196, encoder_dim=2048]
attn_mask: [batch_size, len_q=196, len_k=196]
In self-decoder attention:
Q = K = V: [batch_size, max_len=52, embed_dim=512]
attn_mask: [batch_size, len_q=52, len_k=52]
encoder-decoder attention:
Q: [batch_size, 52, 512] from decoder
K, V: [batch_size, 196, 2048] from encoder
attn_mask: [batch_size, len_q=52, len_k=196]
return _, attn: [batch_size, n_heads, len_q, len_k]
"""
residual, batch_size = Q, Q.size(0)
# q_s: [batch_size, n_heads=8, len_q, QKVdim] k_s/v_s: [batch_size, n_heads=8, len_k, QKVdim]
q_s = self.W_Q(Q).view(batch_size, -1, self.n_heads, self.QKVdim).transpose(1, 2)
k_s = self.W_K(K).view(batch_size, -1, self.n_heads, self.QKVdim).transpose(1, 2)
v_s = self.W_V(V).view(batch_size, -1, self.n_heads, self.QKVdim).transpose(1, 2)
# attn_mask: [batch_size, self.n_heads, len_q, len_k]
attn_mask = attn_mask.unsqueeze(1).repeat(1, self.n_heads, 1, 1)
# attn: [batch_size, n_heads, len_q, len_k]
# context: [batch_size, n_heads, len_q, QKVdim]
context, attn = ScaledDotProductAttention(self.QKVdim)(q_s, k_s, v_s, attn_mask)
# context: [batch_size, n_heads, len_q, QKVdim] -> [batch_size, len_q, n_heads * QKVdim]
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.n_heads * self.QKVdim).to(device)
# output: [batch_size, len_q, embed_dim]
output = self.W_O(context)
output = self.dropout(output)
return nn.LayerNorm(self.embed_dim).to(device)(output + residual), attn
class PoswiseFeedForwardNet(nn.Module):
def __init__(self, embed_dim, d_ff, dropout):
super(PoswiseFeedForwardNet, self).__init__()
"""
Two fc layers can also be described by two cnn with kernel_size=1.
"""
self.conv1 = nn.Conv1d(in_channels=embed_dim, out_channels=d_ff, kernel_size=1).to(device)
self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=embed_dim, kernel_size=1).to(device)
self.dropout = nn.Dropout(p=dropout)
self.embed_dim = embed_dim
def forward(self, inputs):
"""
encoder: inputs: [batch_size, len_q=196, embed_dim=2048]
decoder: inputs: [batch_size, max_len=52, embed_dim=512]
"""
residual = inputs
output = nn.ReLU()(self.conv1(inputs.transpose(1, 2)))
output = self.conv2(output).transpose(1, 2)
output = self.dropout(output)
return nn.LayerNorm(self.embed_dim).to(device)(output + residual)
class DecoderLayer(nn.Module):
def __init__(self, embed_dim, dropout, attention_method, n_heads):
super(DecoderLayer, self).__init__()
self.dec_self_attn = Multi_Head_Attention(Q_dim=embed_dim, K_dim=embed_dim, QKVdim=64, n_heads=n_heads, dropout=dropout)
if attention_method == "ByPixel":
self.dec_enc_attn = Multi_Head_Attention(Q_dim=embed_dim, K_dim=2048, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=embed_dim, d_ff=2048, dropout=dropout)
elif attention_method == "ByChannel":
self.dec_enc_attn = Multi_Head_Attention(Q_dim=embed_dim, K_dim=196, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=embed_dim, d_ff=2048, dropout=dropout) # need to change
def forward(self, dec_inputs, enc_outputs, dec_self_attn_mask, dec_enc_attn_mask):
"""
:param dec_inputs: [batch_size, max_len=52, embed_dim=512]
:param enc_outputs: [batch_size, num_pixels=196, 2048]
:param dec_self_attn_mask: [batch_size, 52, 52]
:param dec_enc_attn_mask: [batch_size, 52, 196]
"""
dec_outputs, dec_self_attn = self.dec_self_attn(dec_inputs, dec_inputs, dec_inputs, dec_self_attn_mask)
dec_outputs, dec_enc_attn = self.dec_enc_attn(dec_outputs, enc_outputs, enc_outputs, dec_enc_attn_mask)
dec_outputs = self.pos_ffn(dec_outputs)
return dec_outputs, dec_self_attn, dec_enc_attn
class Decoder(nn.Module):
def __init__(self, n_layers, vocab_size, embed_dim, dropout, attention_method, n_heads):
super(Decoder, self).__init__()
self.vocab_size = vocab_size
self.tgt_emb = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
self.pos_emb = nn.Embedding.from_pretrained(self.get_position_embedding_table(embed_dim), freeze=True)
self.dropout = nn.Dropout(p=dropout)
self.layers = nn.ModuleList([DecoderLayer(embed_dim, dropout, attention_method, n_heads) for _ in range(n_layers)])
self.projection = nn.Linear(embed_dim, vocab_size, bias=False).to(device)
self.attention_method = attention_method
def get_position_embedding_table(self, embed_dim):
def cal_angle(position, hid_idx):
return position / np.power(10000, 2 * (hid_idx // 2) / embed_dim)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_idx) for hid_idx in range(embed_dim)]
embedding_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(52)])
embedding_table[:, 0::2] = np.sin(embedding_table[:, 0::2]) # dim 2i
embedding_table[:, 1::2] = np.cos(embedding_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(embedding_table).to(device)
def get_attn_pad_mask(self, seq_q, seq_k):
batch_size, len_q = seq_q.size()
batch_size, len_k = seq_k.size()
# In wordmap, <pad>:0
# pad_attn_mask: [batch_size, 1, len_k], one is masking
pad_attn_mask = seq_k.data.eq(0).unsqueeze(1)
return pad_attn_mask.expand(batch_size, len_q, len_k) # [batch_size, len_q, len_k]
def get_attn_subsequent_mask(self, seq):
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
subsequent_mask = np.triu(np.ones(attn_shape), k=1)
subsequent_mask = torch.from_numpy(subsequent_mask).byte().to(device)
return subsequent_mask
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
:param encoder_out: [batch_size, num_pixels=196, 2048]
:param encoded_captions: [batch_size, 52]
:param caption_lengths: [batch_size, 1]
"""
batch_size = encoder_out.size(0)
# Sort input data by decreasing lengths.
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# dec_outputs: [batch_size, max_len=52, embed_dim=512]
# dec_self_attn_pad_mask: [batch_size, len_q=52, len_k=52], 1 if id=0(<pad>)
# dec_self_attn_subsequent_mask: [batch_size, 52, 52], Upper triangle of an array with 1.
# dec_self_attn_mask for self-decoder attention, the position whose val > 0 will be masked.
# dec_enc_attn_mask for encoder-decoder attention.
# e.g. 9488, 23, 53, 74, 0, 0 | dec_self_attn_mask:
# 0 1 1 1 2 2
# 0 0 1 1 2 2
# 0 0 0 1 2 2
# 0 0 0 0 2 2
# 0 0 0 0 1 2
# 0 0 0 0 1 1
dec_outputs = self.tgt_emb(encoded_captions) + self.pos_emb(torch.LongTensor([list(range(52))]*batch_size).to(device))
dec_outputs = self.dropout(dec_outputs)
dec_self_attn_pad_mask = self.get_attn_pad_mask(encoded_captions, encoded_captions)
dec_self_attn_subsequent_mask = self.get_attn_subsequent_mask(encoded_captions)
dec_self_attn_mask = torch.gt((dec_self_attn_pad_mask + dec_self_attn_subsequent_mask), 0)
if self.attention_method == "ByPixel":
dec_enc_attn_mask = (torch.tensor(np.zeros((batch_size, 52, 196))).to(device) == torch.tensor(np.ones((batch_size, 52, 196))).to(device))
elif self.attention_method == "ByChannel":
dec_enc_attn_mask = (torch.tensor(np.zeros((batch_size, 52, channel_number))).to(device) == torch.tensor(np.ones((batch_size, 52, channel_number))).to(device))
dec_self_attns, dec_enc_attns = [], []
for layer in self.layers:
# attn: [batch_size, n_heads, len_q, len_k]
dec_outputs, dec_self_attn, dec_enc_attn = layer(dec_outputs, encoder_out, dec_self_attn_mask, dec_enc_attn_mask)
dec_self_attns.append(dec_self_attn)
dec_enc_attns.append(dec_enc_attn)
predictions = self.projection(dec_outputs)
return predictions, encoded_captions, decode_lengths, sort_ind, dec_self_attns, dec_enc_attns
class EncoderLayer(nn.Module):
def __init__(self, dropout, attention_method, n_heads):
super(EncoderLayer, self).__init__()
"""
In "Attention is all you need" paper, dk = dv = 64, h = 8, N=6
"""
if attention_method == "ByPixel":
self.enc_self_attn = Multi_Head_Attention(Q_dim=2048, K_dim=2048, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=2048, d_ff=4096, dropout=dropout)
elif attention_method == "ByChannel":
self.enc_self_attn = Multi_Head_Attention(Q_dim=196, K_dim=196, QKVdim=64, n_heads=n_heads, dropout=dropout)
self.pos_ffn = PoswiseFeedForwardNet(embed_dim=196, d_ff=512, dropout=dropout)
def forward(self, enc_inputs, enc_self_attn_mask):
"""
:param enc_inputs: [batch_size, num_pixels=196, 2048]
:param enc_outputs: [batch_size, len_q=196, d_model=2048]
:return: attn: [batch_size, n_heads=8, 196, 196]
"""
enc_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask)
enc_outputs = self.pos_ffn(enc_outputs)
return enc_outputs, attn
class Encoder(nn.Module):
def __init__(self, n_layers, dropout, attention_method, n_heads):
super(Encoder, self).__init__()
if attention_method == "ByPixel":
self.pos_emb = nn.Embedding.from_pretrained(self.get_position_embedding_table(), freeze=True)
# self.dropout = nn.Dropout(p=dropout)
self.layers = nn.ModuleList([EncoderLayer(dropout, attention_method, n_heads) for _ in range(n_layers)])
self.attention_method = attention_method
def get_position_embedding_table(self):
def cal_angle(position, hid_idx):
x = position % 14
y = position // 14
x_enc = x / np.power(10000, hid_idx / 1024)
y_enc = y / np.power(10000, hid_idx / 1024)
return np.sin(x_enc), np.sin(y_enc)
def get_posi_angle_vec(position):
return [cal_angle(position, hid_idx)[0] for hid_idx in range(1024)] + [cal_angle(position, hid_idx)[1] for hid_idx in range(1024)]
embedding_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(196)])
return torch.FloatTensor(embedding_table).to(device)
def forward(self, encoder_out):
"""
:param encoder_out: [batch_size, num_pixels=196, dmodel=2048]
"""
batch_size = encoder_out.size(0)
positions = encoder_out.size(1)
if self.attention_method == "ByPixel":
encoder_out = encoder_out + self.pos_emb(torch.LongTensor([list(range(positions))]*batch_size).to(device))
# encoder_out = self.dropout(encoder_out)
# enc_self_attn_mask: [batch_size, 196, 196]
enc_self_attn_mask = (torch.tensor(np.zeros((batch_size, positions, positions))).to(device)
== torch.tensor(np.ones((batch_size, positions, positions))).to(device))
enc_self_attns = []
for layer in self.layers:
encoder_out, enc_self_attn = layer(encoder_out, enc_self_attn_mask)
enc_self_attns.append(enc_self_attn)
return encoder_out, enc_self_attns
class Transformer(nn.Module):
"""
See paper 5.4: "Attention Is All You Need" - https://arxiv.org/abs/1706.03762
"Apply dropout to the output of each sub-layer, before it is added to the sub-layer input and normalized.
In addition, apply dropout to the sums of the embeddings and the positional encodings in both the encoder
and decoder stacks." (Now, we dont't apply dropout to the encoder embeddings)
"""
def __init__(self, vocab_size, embed_dim, encoder_layers, decoder_layers, dropout=0.1, attention_method="ByPixel", n_heads=8):
super(Transformer, self).__init__()
self.encoder = Encoder(encoder_layers, dropout, attention_method, n_heads)
self.decoder = Decoder(decoder_layers, vocab_size, embed_dim, dropout, attention_method, n_heads)
self.embedding = self.decoder.tgt_emb
self.attention_method = attention_method
def load_pretrained_embeddings(self, embeddings):
self.embedding.weight = nn.Parameter(embeddings)
def fine_tune_embeddings(self, fine_tune=True):
for p in self.embedding.parameters():
p.requires_grad = fine_tune
def forward(self, enc_inputs, encoded_captions, caption_lengths):
"""
preprocess: enc_inputs: [batch_size, 14, 14, 2048]/[batch_size, 196, 2048] -> [batch_size, 196, 2048]
encoded_captions: [batch_size, 52]
caption_lengths: [batch_size, 1], not used
The encoder or decoder is composed of a stack of n_layers=6 identical layers.
One layer in encoder: Multi-head Attention(self-encoder attention) with Norm & Residual
+ Feed Forward with Norm & Residual
One layer in decoder: Masked Multi-head Attention(self-decoder attention) with Norm & Residual
+ Multi-head Attention(encoder-decoder attention) with Norm & Residual
+ Feed Forward with Norm & Residual
"""
batch_size = enc_inputs.size(0)
encoder_dim = enc_inputs.size(-1)
if self.attention_method == "ByPixel":
enc_inputs = enc_inputs.view(batch_size, -1, encoder_dim)
elif self.attention_method == "ByChannel":
enc_inputs = enc_inputs.view(batch_size, -1, encoder_dim).permute(0, 2, 1) # (batch_size, 2048, 196)
encoder_out, enc_self_attns = self.encoder(enc_inputs)
# encoder_out: [batch_size, 196, 2048]
predictions, encoded_captions, decode_lengths, sort_ind, dec_self_attns, dec_enc_attns = self.decoder(encoder_out, encoded_captions, caption_lengths)
alphas = {"enc_self_attns": enc_self_attns, "dec_self_attns": dec_self_attns, "dec_enc_attns": dec_enc_attns}
return predictions, encoded_captions, decode_lengths, alphas, sort_ind