2
2
"cells" : [
3
3
{
4
4
"cell_type" : " markdown" ,
5
- "metadata" : {},
6
5
"source" : [
7
- " In the following example, **title**, **x label** and **y label** are added to the [barplot](http://python-graph-gallery.com/barplot/) using `title()`, `xlabel()`, and `ylabel()` functions of [matplotlib](http://python-graph-gallery.com/matplotlib/) library. The functions applied on a barplot in the example, but the same method works for other chart types."
8
- ]
6
+ " In the following example, **title**, **x label** and **y label** are added to the [barplot](http://python-graph-gallery.com/barplot/) using the `title()`, `xlabel()`, and `ylabel()` functions of the [matplotlib](http://python-graph-gallery.com/matplotlib/) library. \n " ,
7
+ " \n " ,
8
+ " Those functions are applied to a barplot in the example, but the same method would work for other chart types."
9
+ ],
10
+ "metadata" : {}
9
11
},
10
12
{
11
13
"cell_type" : " code" ,
12
14
"execution_count" : 3 ,
13
- "metadata" : {},
14
- "outputs" : [
15
- {
16
- "data" : {
17
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR00lEQVR4nO3de7BdZX3G8e/DTRBEBA4UuQWrVYMoarR4GxFE0TaCFq2MYmZEqVO1oo4ojjPVqa3CWO9aZcQSqAgoUogtN7mrgISbchnkIrQwXAJCuVQrwV//2Ct4PDlJNidZe3Pyfj8zZ85e71p7r9/KTp795t1rvStVhSSpHeuMuwBJ0mgZ/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4pTUsydVJdl/J+nOTvGt0FUl/zOBXM5LcnOR3Sbac0n55kkoyZwaveVSST09uq6qdq+rcbv0nk/zb6tQtrWkGv1rzK2D/ZQtJdgGeOL5ypNEz+NWaY4B3TFpeABy9bCHJi5LcmWTdSW1vSnLl1BdKchDwNuCQJA8mWdS135zk1Un2Bj4O/HW3frnX6LZ/Z5Jrk9yb5PQkO66RI5VWwOBXay4CNk3y7C7c3wo8OhRTVZcA9wCvmfScA5j04TBp2yOA7wCHV9UmVTV/yvrTgH8Cju/WP2/qayTZh8GHw5uACeAC4Lurd4jSyhn8atGyXv9ewLXAbVPWLwTeDpBkc+C1wLE91fIe4DNVdW1VLWXwQbGrvX71ab1xFyCNwTHA+cBOTNOTZ/A/gGuTbAy8Bbigqm7vqZYdgS8l+edJbQG2BW7paZ9qnD1+NaeqbmHwJe/rgR9Ms/424EIGwy8HMPigWOHLrWp3q1j/38DfVNVmk342qqqfruJ50owZ/GrVgcAeVfXQCtYfDRwC7MI0Hw6T3Ak8bRXr5yRZ0b+1bwCHJtkZIMmTk7x5pZVLq8ngV5Oq6saqWrySTU5iMAxzUlX970q2OxKYm+S+JP8+zfrvdb/vSXLZNHWcBBwGHJfkfuAq4HXDHIM0U/FGLNL0ktzIYBjmR+OuRVqT7PFL00jyVwzG588edy3SmuZZPdIUSc4F5gIHVNXvx1yOtMY51CNJjXGoR5IaMyuGerbccsuaM2fOuMuQpFnl0ksvvbuqJqa2z4rgnzNnDosXr+zMO0nSVEmmvfrboR5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWrMrLhyV5Iei0WHLBp3CWvE/MPn9/K69vglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4JekxvQe/EnWTXJ5kh92yzsluTjJDUmOT7JB3zVIkv5gFD3+DwDXTlo+DPhCVT0duBc4cAQ1SJI6vQZ/ku2AvwC+1S0H2AP4frfJQmDfPmuQJP2xvnv8XwQOAX7fLW8B3FdVS7vlW4Ftp3tikoOSLE6yeMmSJT2XKUnt6C34k/wlcFdVXTqT51fVEVU1r6rmTUxMrOHqJKld6/X42i8D3pDk9cCGwKbAl4DNkqzX9fq3A27rsQZJ0hS99fir6tCq2q6q5gBvBc6uqrcB5wD7dZstAE7uqwZJ0vLGcR7/R4EPJbmBwZj/kWOoQZKa1edQz6Oq6lzg3O7xTcCLR7FfSdLyvHJXkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMb0Ff5INk/wsyZVJrk7yqa59pyQXJ7khyfFJNuirBknS8vrs8f8fsEdVPQ/YFdg7yW7AYcAXqurpwL3AgT3WIEmaorfgr4EHu8X1u58C9gC+37UvBPbtqwZJ0vJ6HeNPsm6SK4C7gDOBG4H7qmppt8mtwLYreO5BSRYnWbxkyZI+y5SkpvQa/FX1SFXtCmwHvBh41mN47hFVNa+q5k1MTPRVoiQ1ZyRn9VTVfcA5wEuAzZKs163aDrhtFDVIkgb6PKtnIslm3eONgL2Aaxl8AOzXbbYAOLmvGiRJy1tv1ZvM2DbAwiTrMviAOaGqfpjkGuC4JJ8GLgeO7LEGSdIUvQV/Vf0ceP407TcxGO+XJI2BV+5KUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjHlPwJ1knyaZ9FSNJ6t8qgz/JsUk2TbIxcBVwTZKP9F+aJKkPw/T451bV/QzulHUqsBNwQJ9FSZL6M0zwr59kfQbBf0pVPczgFoqSpFlomOD/JnAzsDFwfpIdgfv7LEqS1J9VTstcVV8Gvjyp6ZYkr+qvJElSn4b5cnfrJEcmObVbnsvgzlmSpFlomKGeo4DTgad2y78EDu6pHklSz4YJ/i2r6gTg9wBVtRR4pNeqJEm9GSb4H0qyBd2ZPEl2A/6n16okSb0Z5p67HwJOAf40yU+ACWC/XquSJPVmmLN6LkvySuCZQIDrunP5JUmz0CqDP8k7pjS9IAlVdXRPNUmSejTMUM+LJj3eENgTuAww+CVpFhpmqOf9k5eTbAYc11dBkqR+zWQ+/ocYTNQmSZqFhhnjX8QfJmVbB5gLnNBnUZKk/gwzxv+5SY+XArdU1a091SNJ6tkwY/znjaIQSdJorDD4kzzA9PPuB6iq8haMkjQLrTD4q+pJoyxEkjQaw4zxA5BkKwbn8QNQVf/VS0WSpF4NMx//G5JcD/wKOI/B3bhO7bkuSVJPhjmP/x+A3YBfVtVODK7cvajXqiRJvRkm+B+uqnuAdZKsU1XnAPN6rkuS1JNhxvjvS7IJcAHwnSR3Mbh6V5I0Cw3T4z8HeDLwAeA04EZgfp9FSZL6M0zwrwecAZwLPAk4vhv6kSTNQqsM/qr6VFXtDLwX2AY4L8mPVvW8JNsnOSfJNUmuTvKBrn3zJGcmub77/ZTVPgpJ0tAey+ycdwF3APcAWw2x/VLgw1U1l8FZQe9NMhf4GHBWVT0DOKtbliSNyDDn8f9tknMZhPQWwLur6rmrel5V3V5Vl3WPHwCuBbYF9gEWdpstBPadUeWSpBkZ5qye7YGDq+qKme4kyRzg+cDFwNZVdXu36g5g6xU85yDgIIAddthhpruWJE0xzBj/oasZ+psAJzL48Lh/ymsX008ER1UdUVXzqmrexMTETHcvSZpiJnfgGlqS9RmE/neq6gdd851JtunWb8PguwNJ0oj0FvxJAhwJXFtVn5+06hRgQfd4AXByXzVIkpY39OycM/Ay4ADgF0mu6No+DnwWOCHJgcAtwFt6rEGSNEVvwV9VP2Zw05bp7NnXfiVJK9frGL8k6fHH4Jekxhj8ktSYPr/clTQmiw5ZNO4S1pj5hzsZ8Jpmj1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5Jasx64y5A/Vl0yKJxl7DGzD98/rhLkNYa9vglqTEGvyQ1xuCXpMYY/JLUGINfkhrTW/An+XaSu5JcNalt8yRnJrm++/2UvvYvSZpenz3+o4C9p7R9DDirqp4BnNUtS5JGqLfgr6rzgV9Pad4HWNg9Xgjs29f+JUnTG/UY/9ZVdXv3+A5g6xVtmOSgJIuTLF6yZMloqpOkBozty92qKqBWsv6IqppXVfMmJiZGWJkkrd1GHfx3JtkGoPt914j3L0nNG3XwnwIs6B4vAE4e8f4lqXl9ns75XeBC4JlJbk1yIPBZYK8k1wOv7pYlSSPU2+ycVbX/Clbt2dc+JUmr5pW7ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jje7sAljduiQxaNu4Q1Zv7h88ddgtYi9vglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjVnrL+DyIh5J+mP2+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1ZizBn2TvJNcluSHJx8ZRgyS1auTBn2Rd4GvA64C5wP5J5o66Dklq1Th6/C8Gbqiqm6rqd8BxwD5jqEOSmpSqGu0Ok/2AvavqXd3yAcCfV9X7pmx3EHBQt/hM4LqRFvrYbAncPe4ixqjl42/52KHt458Nx75jVU1MbXzcTstcVUcAR4y7jmEkWVxV88Zdx7i0fPwtHzu0ffyz+djHMdRzG7D9pOXtujZJ0giMI/gvAZ6RZKckGwBvBU4ZQx2S1KSRD/VU1dIk7wNOB9YFvl1VV4+6jjVsVgxJ9ajl42/52KHt45+1xz7yL3clSePllbuS1BiDX5IaY/CvpiT7Jqkkzxp3LaOU5JEkVyS5MsllSV467ppGKcmfJDkuyY1JLk3yn0n+bNx1jcKk9/7q7v3/cJJmsmTS8S/7mXXTzjjGv5qSHA88FTi7qv5+3PWMSpIHq2qT7vFrgY9X1SvHXNZIJAnwU2BhVX2ja3sesGlVXTDW4kZgynu/FXAs8JNW/v5PPv7ZqplP6T4k2QR4OXAgg9NSW7UpcO+4ixihVwEPLwt9gKq6soXQn6qq7mJwhf37ug9EzQKP2yt3Z4l9gNOq6pdJ7knywqq6dNxFjchGSa4ANgS2AfYYbzkj9Ryglfd5larqpm7yxa2AO8ddzwgs+7u/zGeq6vhxFTMTBv/q2R/4Uvf4uG65lUD4TVXtCpDkJcDRSZ5Tjh1q7ffo3/3ZyuCfoSSbM+jl7pKkGFyMVkk+0lr4VdWFSbYEJoC7xl3PCFwN7DfuIh4vkjwNeIQ23vu1gmP8M7cfcExV7VhVc6pqe+BXwCvGXNfIdWc0rQvcM+5aRuRs4AndDLIAJHlukhbf+wngG8BXW+vwzGb2+Gduf+CwKW0ndu3nj76ckZs8zhlgQVU9MsZ6RqaqKskbgS8m+SjwW+Bm4OBx1jVCy9779YGlwDHA58da0WhNHeM/rapm1Smdns4pSY1xqEeSGmPwS1JjDH5JaozBL0mNMfglqTEGvwQk2X1UM4x2M3luNop9SdPxPH5pYHfgQQazbvaim8QsVfX6vvYhDcMev9ZqSd6R5OfdvPHHJJmf5OIklyf5UZKtk8wB3gN8sJtf/RVJJpKcmOSS7udl3etNJDmzm4v+W0lu6aarIMmHklzV/Rzctc1Jcl2So4GrgO2T3DzpOW9P8rNuv99Msm73c1T3Or9I8sFx/Nlp7eUFXFprJdkZOAl4aVXd3c2vVMB93dW37wKeXVUfTvJJ4MGq+lz33GOBr1fVj5PsAJxeVc9O8lXgtqr6TJK9gVMZzFG0I3AUsBuDK5kvBt7OYLrqm7oaLupe+2ZgXve8w4E3VdXDSb4OXMRgLqDPVtVe3fabVdV9vf5hqSkO9Whttgfwvaq6G6Cqfp1kF+D4JNsAGzCYX2k6rwbmTppiftNJ9194Y/d6pyVZdh+ClwMnVdVDAEl+wGDeplOAW5aF/hR7Ai8ELun2sxGDic4WAU9L8hXgP4AzZnj80rQMfrXmK8Dnq+qUJLsDn1zBdusAu1XVbyc3zvBeIw+toD0M7uJ16HIrBnf0ei2DIai3AO+cyY6l6TjGr7XZ2cCbk2wBj06l/WTgtm79gknbPgA8adLyGcD7ly0k2bV7+BMGQUyS1wBP6dovAPZN8sQkGzP4X8Gq7sh1FrBfd/tCkmyeZMdu/H+dqjoR+ATwgqGPWBqCPX6ttarq6iT/CJyX5BHgcgY9/O91QzRnAzt1my8Cvp9kHwaB/3fA15L8nMG/k/MZ9L4/BXw3yQHAhcAdwANVdVmSo4Cfda/3raq6vPvieEX1XZPkE8AZGdys/GHgvcBvgH/NH25gvtz/CKTV4Ze70mOQ5AnAI1W1tLvz2L/M9rsxqT32+KXHZgfghK43/jvg3WOuR3rM7PFLUmP8cleSGmPwS1JjDH5JaozBL0mNMfglqTH/D2chXrkGszTVAAAAAElFTkSuQmCC\n",
18
- "text/plain" : [
19
- " <Figure size 432x288 with 1 Axes>"
20
- ]
21
- },
22
- "metadata" : {
23
- "needs_background" : " light"
24
- },
25
- "output_type" : " display_data"
26
- }
27
- ],
28
15
"source" : [
29
16
" # libraries\n " ,
30
17
" import numpy as np\n " ,
48
35
" \n " ,
49
36
" # Show graph\n " ,
50
37
" plt.show()"
51
- ]
38
+ ],
39
+ "outputs" : [
40
+ {
41
+ "output_type" : " display_data" ,
42
+ "data" : {
43
+ "text/plain" : [
44
+ " <Figure size 432x288 with 1 Axes>"
45
+ ],
46
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR00lEQVR4nO3de7BdZX3G8e/DTRBEBA4UuQWrVYMoarR4GxFE0TaCFq2MYmZEqVO1oo4ojjPVqa3CWO9aZcQSqAgoUogtN7mrgISbchnkIrQwXAJCuVQrwV//2Ct4PDlJNidZe3Pyfj8zZ85e71p7r9/KTp795t1rvStVhSSpHeuMuwBJ0mgZ/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4pTUsydVJdl/J+nOTvGt0FUl/zOBXM5LcnOR3Sbac0n55kkoyZwaveVSST09uq6qdq+rcbv0nk/zb6tQtrWkGv1rzK2D/ZQtJdgGeOL5ypNEz+NWaY4B3TFpeABy9bCHJi5LcmWTdSW1vSnLl1BdKchDwNuCQJA8mWdS135zk1Un2Bj4O/HW3frnX6LZ/Z5Jrk9yb5PQkO66RI5VWwOBXay4CNk3y7C7c3wo8OhRTVZcA9wCvmfScA5j04TBp2yOA7wCHV9UmVTV/yvrTgH8Cju/WP2/qayTZh8GHw5uACeAC4Lurd4jSyhn8atGyXv9ewLXAbVPWLwTeDpBkc+C1wLE91fIe4DNVdW1VLWXwQbGrvX71ab1xFyCNwTHA+cBOTNOTZ/A/gGuTbAy8Bbigqm7vqZYdgS8l+edJbQG2BW7paZ9qnD1+NaeqbmHwJe/rgR9Ms/424EIGwy8HMPigWOHLrWp3q1j/38DfVNVmk342qqqfruJ50owZ/GrVgcAeVfXQCtYfDRwC7MI0Hw6T3Ak8bRXr5yRZ0b+1bwCHJtkZIMmTk7x5pZVLq8ngV5Oq6saqWrySTU5iMAxzUlX970q2OxKYm+S+JP8+zfrvdb/vSXLZNHWcBBwGHJfkfuAq4HXDHIM0U/FGLNL0ktzIYBjmR+OuRVqT7PFL00jyVwzG588edy3SmuZZPdIUSc4F5gIHVNXvx1yOtMY51CNJjXGoR5IaMyuGerbccsuaM2fOuMuQpFnl0ksvvbuqJqa2z4rgnzNnDosXr+zMO0nSVEmmvfrboR5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWrMrLhyV5Iei0WHLBp3CWvE/MPn9/K69vglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4JekxvQe/EnWTXJ5kh92yzsluTjJDUmOT7JB3zVIkv5gFD3+DwDXTlo+DPhCVT0duBc4cAQ1SJI6vQZ/ku2AvwC+1S0H2AP4frfJQmDfPmuQJP2xvnv8XwQOAX7fLW8B3FdVS7vlW4Ftp3tikoOSLE6yeMmSJT2XKUnt6C34k/wlcFdVXTqT51fVEVU1r6rmTUxMrOHqJKld6/X42i8D3pDk9cCGwKbAl4DNkqzX9fq3A27rsQZJ0hS99fir6tCq2q6q5gBvBc6uqrcB5wD7dZstAE7uqwZJ0vLGcR7/R4EPJbmBwZj/kWOoQZKa1edQz6Oq6lzg3O7xTcCLR7FfSdLyvHJXkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMb0Ff5INk/wsyZVJrk7yqa59pyQXJ7khyfFJNuirBknS8vrs8f8fsEdVPQ/YFdg7yW7AYcAXqurpwL3AgT3WIEmaorfgr4EHu8X1u58C9gC+37UvBPbtqwZJ0vJ6HeNPsm6SK4C7gDOBG4H7qmppt8mtwLYreO5BSRYnWbxkyZI+y5SkpvQa/FX1SFXtCmwHvBh41mN47hFVNa+q5k1MTPRVoiQ1ZyRn9VTVfcA5wEuAzZKs163aDrhtFDVIkgb6PKtnIslm3eONgL2Aaxl8AOzXbbYAOLmvGiRJy1tv1ZvM2DbAwiTrMviAOaGqfpjkGuC4JJ8GLgeO7LEGSdIUvQV/Vf0ceP407TcxGO+XJI2BV+5KUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjHlPwJ1knyaZ9FSNJ6t8qgz/JsUk2TbIxcBVwTZKP9F+aJKkPw/T451bV/QzulHUqsBNwQJ9FSZL6M0zwr59kfQbBf0pVPczgFoqSpFlomOD/JnAzsDFwfpIdgfv7LEqS1J9VTstcVV8Gvjyp6ZYkr+qvJElSn4b5cnfrJEcmObVbnsvgzlmSpFlomKGeo4DTgad2y78EDu6pHklSz4YJ/i2r6gTg9wBVtRR4pNeqJEm9GSb4H0qyBd2ZPEl2A/6n16okSb0Z5p67HwJOAf40yU+ACWC/XquSJPVmmLN6LkvySuCZQIDrunP5JUmz0CqDP8k7pjS9IAlVdXRPNUmSejTMUM+LJj3eENgTuAww+CVpFhpmqOf9k5eTbAYc11dBkqR+zWQ+/ocYTNQmSZqFhhnjX8QfJmVbB5gLnNBnUZKk/gwzxv+5SY+XArdU1a091SNJ6tkwY/znjaIQSdJorDD4kzzA9PPuB6iq8haMkjQLrTD4q+pJoyxEkjQaw4zxA5BkKwbn8QNQVf/VS0WSpF4NMx//G5JcD/wKOI/B3bhO7bkuSVJPhjmP/x+A3YBfVtVODK7cvajXqiRJvRkm+B+uqnuAdZKsU1XnAPN6rkuS1JNhxvjvS7IJcAHwnSR3Mbh6V5I0Cw3T4z8HeDLwAeA04EZgfp9FSZL6M0zwrwecAZwLPAk4vhv6kSTNQqsM/qr6VFXtDLwX2AY4L8mPVvW8JNsnOSfJNUmuTvKBrn3zJGcmub77/ZTVPgpJ0tAey+ycdwF3APcAWw2x/VLgw1U1l8FZQe9NMhf4GHBWVT0DOKtbliSNyDDn8f9tknMZhPQWwLur6rmrel5V3V5Vl3WPHwCuBbYF9gEWdpstBPadUeWSpBkZ5qye7YGDq+qKme4kyRzg+cDFwNZVdXu36g5g6xU85yDgIIAddthhpruWJE0xzBj/oasZ+psAJzL48Lh/ymsX008ER1UdUVXzqmrexMTETHcvSZpiJnfgGlqS9RmE/neq6gdd851JtunWb8PguwNJ0oj0FvxJAhwJXFtVn5+06hRgQfd4AXByXzVIkpY39OycM/Ay4ADgF0mu6No+DnwWOCHJgcAtwFt6rEGSNEVvwV9VP2Zw05bp7NnXfiVJK9frGL8k6fHH4Jekxhj8ktSYPr/clTQmiw5ZNO4S1pj5hzsZ8Jpmj1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5Jasx64y5A/Vl0yKJxl7DGzD98/rhLkNYa9vglqTEGvyQ1xuCXpMYY/JLUGINfkhrTW/An+XaSu5JcNalt8yRnJrm++/2UvvYvSZpenz3+o4C9p7R9DDirqp4BnNUtS5JGqLfgr6rzgV9Pad4HWNg9Xgjs29f+JUnTG/UY/9ZVdXv3+A5g6xVtmOSgJIuTLF6yZMloqpOkBozty92qKqBWsv6IqppXVfMmJiZGWJkkrd1GHfx3JtkGoPt914j3L0nNG3XwnwIs6B4vAE4e8f4lqXl9ns75XeBC4JlJbk1yIPBZYK8k1wOv7pYlSSPU2+ycVbX/Clbt2dc+JUmr5pW7ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jje7sAljduiQxaNu4Q1Zv7h88ddgtYi9vglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjVnrL+DyIh5J+mP2+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1ZizBn2TvJNcluSHJx8ZRgyS1auTBn2Rd4GvA64C5wP5J5o66Dklq1Th6/C8Gbqiqm6rqd8BxwD5jqEOSmpSqGu0Ok/2AvavqXd3yAcCfV9X7pmx3EHBQt/hM4LqRFvrYbAncPe4ixqjl42/52KHt458Nx75jVU1MbXzcTstcVUcAR4y7jmEkWVxV88Zdx7i0fPwtHzu0ffyz+djHMdRzG7D9pOXtujZJ0giMI/gvAZ6RZKckGwBvBU4ZQx2S1KSRD/VU1dIk7wNOB9YFvl1VV4+6jjVsVgxJ9ajl42/52KHt45+1xz7yL3clSePllbuS1BiDX5IaY/CvpiT7Jqkkzxp3LaOU5JEkVyS5MsllSV467ppGKcmfJDkuyY1JLk3yn0n+bNx1jcKk9/7q7v3/cJJmsmTS8S/7mXXTzjjGv5qSHA88FTi7qv5+3PWMSpIHq2qT7vFrgY9X1SvHXNZIJAnwU2BhVX2ja3sesGlVXTDW4kZgynu/FXAs8JNW/v5PPv7ZqplP6T4k2QR4OXAgg9NSW7UpcO+4ixihVwEPLwt9gKq6soXQn6qq7mJwhf37ug9EzQKP2yt3Z4l9gNOq6pdJ7knywqq6dNxFjchGSa4ANgS2AfYYbzkj9Ryglfd5larqpm7yxa2AO8ddzwgs+7u/zGeq6vhxFTMTBv/q2R/4Uvf4uG65lUD4TVXtCpDkJcDRSZ5Tjh1q7ffo3/3ZyuCfoSSbM+jl7pKkGFyMVkk+0lr4VdWFSbYEJoC7xl3PCFwN7DfuIh4vkjwNeIQ23vu1gmP8M7cfcExV7VhVc6pqe+BXwCvGXNfIdWc0rQvcM+5aRuRs4AndDLIAJHlukhbf+wngG8BXW+vwzGb2+Gduf+CwKW0ndu3nj76ckZs8zhlgQVU9MsZ6RqaqKskbgS8m+SjwW+Bm4OBx1jVCy9779YGlwDHA58da0WhNHeM/rapm1Smdns4pSY1xqEeSGmPwS1JjDH5JaozBL0mNMfglqTEGvwQk2X1UM4x2M3luNop9SdPxPH5pYHfgQQazbvaim8QsVfX6vvYhDcMev9ZqSd6R5OfdvPHHJJmf5OIklyf5UZKtk8wB3gN8sJtf/RVJJpKcmOSS7udl3etNJDmzm4v+W0lu6aarIMmHklzV/Rzctc1Jcl2So4GrgO2T3DzpOW9P8rNuv99Msm73c1T3Or9I8sFx/Nlp7eUFXFprJdkZOAl4aVXd3c2vVMB93dW37wKeXVUfTvJJ4MGq+lz33GOBr1fVj5PsAJxeVc9O8lXgtqr6TJK9gVMZzFG0I3AUsBuDK5kvBt7OYLrqm7oaLupe+2ZgXve8w4E3VdXDSb4OXMRgLqDPVtVe3fabVdV9vf5hqSkO9Whttgfwvaq6G6Cqfp1kF+D4JNsAGzCYX2k6rwbmTppiftNJ9194Y/d6pyVZdh+ClwMnVdVDAEl+wGDeplOAW5aF/hR7Ai8ELun2sxGDic4WAU9L8hXgP4AzZnj80rQMfrXmK8Dnq+qUJLsDn1zBdusAu1XVbyc3zvBeIw+toD0M7uJ16HIrBnf0ei2DIai3AO+cyY6l6TjGr7XZ2cCbk2wBj06l/WTgtm79gknbPgA8adLyGcD7ly0k2bV7+BMGQUyS1wBP6dovAPZN8sQkGzP4X8Gq7sh1FrBfd/tCkmyeZMdu/H+dqjoR+ATwgqGPWBqCPX6ttarq6iT/CJyX5BHgcgY9/O91QzRnAzt1my8Cvp9kHwaB/3fA15L8nMG/k/MZ9L4/BXw3yQHAhcAdwANVdVmSo4Cfda/3raq6vPvieEX1XZPkE8AZGdys/GHgvcBvgH/NH25gvtz/CKTV4Ze70mOQ5AnAI1W1tLvz2L/M9rsxqT32+KXHZgfghK43/jvg3WOuR3rM7PFLUmP8cleSGmPwS1JjDH5JaozBL0mNMfglqTH/D2chXrkGszTVAAAAAElFTkSuQmCC"
47
+ },
48
+ "metadata" : {
49
+ "needs_background" : " light"
50
+ }
51
+ }
52
+ ],
53
+ "metadata" : {}
54
+ },
55
+ {
56
+ "cell_type" : " markdown" ,
57
+ "source" : [
58
+ " >Note: the [matplotlib section](https://www.python-graph-gallery.com/matplotlib/) provides a lot of tips and tricks on how to customize a matplotlib chart!"
59
+ ],
60
+ "metadata" : {}
52
61
}
53
62
],
54
63
"metadata" : {
55
64
"chartType" : " barplot" ,
56
- "description" : " In this post, you will see how to add a <b>title</b> and <b>axis labels</b> to your python charts using <a href='https://python-graph-gallery.com/matplotlib/'>matplotlib</a>." ,
65
+ "description" : " In this post, you will see how to add a <b>title</b> and <b>axis labels</b> to your python charts using <a href='https://python-graph-gallery.com/matplotlib/'>matplotlib</a>. If you're new to python and want to get the basics of <code>matplotlib</code>, this <a target='_blank' href='https://datacamp.pxf.io/YgNDbR'>online course</a> can be interesting. " ,
57
66
"family" : " ranking" ,
58
67
"kernelspec" : {
59
68
"display_name" : " Python 3" ,
79
88
},
80
89
"nbformat" : 4 ,
81
90
"nbformat_minor" : 4
82
- }
91
+ }
0 commit comments