Skip to content

Latest commit

 

History

History

cnn-text-classfication

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction

Module implemention from "Convolutional Neural Networks for Sentence Classification".
Perform experiments on the English data from TREC

Requirement

  • python 3.5
  • pytorch 0.2.0
  • numpy 1.13.1
  • tqdm

Usage

python3 main.py -h

You will get:

usage: main.py [-h] [--lr LR] [--epochs EPOCHS] [--batch-size BATCH_SIZE]
               [--save SAVE] [--data DATA] [--dropout DROPOUT]
               [--embed-dim EMBED_DIM] [--kernel-num KERNEL_NUM]
               [--filter-sizes FILTER_SIZES] [--seed SEED] [--cuda-able]

CNN text classification

optional arguments:
  -h, --help            show this help message and exit
  --lr LR               initial learning rate [default: 0.001]
  --epochs EPOCHS       number of epochs for train [default: 32]
  --batch-size BATCH_SIZE
                        batch size for training [default: 64]
  --save SAVE           path to save the final model
  --data DATA           location of the data corpus
  --dropout DROPOUT     the probability for dropout (0 = no dropout) [default:
                        0.5]
  --embed-dim EMBED_DIM
                        number of embedding dimension [default: 128]
  --kernel-num KERNEL_NUM
                        number of each kind of kernel
  --filter-sizes FILTER_SIZES
                        filter sizes
  --seed SEED           random seed
  --cuda-able           enables cuda

Train

python3 main.py

Result

Acc: 91.6%