-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
Copy path875-Koko-Eating-Bananas.c
66 lines (50 loc) · 1.66 KB
/
875-Koko-Eating-Bananas.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/*
Given an array of bananas piles containing differing amounts of bananas and
'h' hours to eat all of them.
Determine the minimum speed (i.e. number of bananas per-hour) possible.
Ex. piles = [3,6,7,11], h = 8 -> 4
If all the bananas can be eaten with speed 'x' than the same holds true for
any speed more than 'x'. Similarly if bananas cannot be eated at speed 'y',
the same will be speeds less than 'y'.
Binary search can be performed on the possible values of speed till the
minimum speed is found with,
left bound = ceil(total/h)
right bound = maximum pile size
Time: O(NlogM) where N is number of piles and M is maximum pile size
Space: O(1)
*/
int hoursRequired(int* piles, int pilesSize, int h, int speed) {
int hours = 0;
for (int i = 0; i < pilesSize; ++i) {
hours += (piles[i]+speed-1)/speed;
}
return hours;
}
long sumOfArray(int* piles, int pilesSize) {
long total = 0l;
for (int i = 0; i < pilesSize; ++i) {
total += piles[i];
}
return total;
}
int maxElement(int* piles, int pilesSize) {
int maxElem = piles[0];
for (int i = 0; i < pilesSize; ++i) {
maxElem = fmax(maxElem, piles[i]);
}
return maxElem;
}
int minEatingSpeed(int* piles, int pilesSize, int h){
long total = sumOfArray(piles, pilesSize);
int l = (total+h-1)/h;
int r = maxElement(piles, pilesSize);
while (l < r) {
int mid = l + (r-l)/2;
int hours = hoursRequired(piles, pilesSize, h, mid);
if (hours <= h)
r = mid;
else if (hours > h)
l = mid + 1;
}
return r;
}