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Theory of Convex Functions
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This chapter develops the basic theory of convex functions that we will
need later. Much of the material is also covered in other courses, so we will
refer to the literature for standard material and focus more on material that
we feel is less standard (but important in our context).

1.1 Notation

For vectors in Rd, we use bold font, and for their coordinates normal font,
e.g. x = (x1, . . . , xd) ∈ Rd. x1,x2, . . . denotes a sequence of vectors. Vectors
are considered as column vectors, unless they are explicitly transposed.
‖x‖ denotes the Euclidean norm (`2-norm or 2-norm) of vector x,

‖x‖ = x>x =
d∑
i=1

x2i .

We also use
N = {1, 2, . . .}, R+ := {x ∈ R : x ≥ 0}.

We are freely using basic notions and material such as open and closed
sets, vector spaces, continuity, convergence, limits, triangle inequality,. . .

1.2 Convex sets

Definition 1.1. A set C ⊆ Rd is convex if for any two points x,y ∈ C, the
connecting line segment is contained in C. In formulas, if for all λ ∈ [0, 1],
λx + (1− λ)y ∈ C; see Figure 1.1.

x

y x

y

Figure 1.1: A convex set (left) and a non-convex set (right)
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Observation 1.2. Let Ci, i ∈ I be convex sets, where I is a (possibly infinite)
index set. Then C =

⋂
i∈I Ci is a convex set.

1.3 Convex functions

We are considering real-valued functions f : dom(f)→ R, where dom(f) ⊆
Rd denotes the domain of f . The graph of f is the set {(x, f(x)) ∈ Rd+1 :
x ∈ dom(f)}. The epigraph (Figure 1.2) is the set of points above the graph,

epi(f) := {(x, α) ∈ Rd+1 : x ∈ dom(f), α ≥ f(x)}.

epi(f)

x

f(x)

graph of f
epi(f)

f(x)

x

Figure 1.2: Graph and epigraph of a non-convex function (left) and a con-
vex function (right)

Definition 1.3 ([BV04, 3.1.1]). A function f : dom(f) → R is convex if (i)
dom(f) is convex and (ii) for all x,y ∈ dom(f) and all λ ∈ [0, 1], we have

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1.1)

Geometrically, the condition means that the line segment connecting
the two points (x, f(x)), (y, f(y)) ∈ Rd+1 lies pointwise above the graph
of f ; see Figure 1.3. (Whenever we say “above”, we mean “above or on”.)
An important special case arises when f : Rd → R is an affine function,
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x y

f(x)

f(y)

λx+ (1− λ)y

f(λx+ (1− λ)y)

λf(x) + (1− λ)f(y)

Figure 1.3: A convex function

i.e. f(x) = c>x + c0 for some vector c ∈ Rd and scalar c0 ∈ R. In this case,
(1.1) is always satisfied with equality, and line segments connecting points
on the graph lie pointwise on the graph.

Observation 1.4. f is a convex function if and only if epi(f) is a convex set.

Proof. This is easy but let us still do it to illustrate the concepts. Let f be a
convex function and consider two points (x, α), (y, β) ∈ epi(f), λ ∈ [0, 1].
This means, f(x) ≤ α, f(y) ≤ β, hence by convexity of f ,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λα + (1− λ)β.

Therefore, by definition of the epigraph,

λ(x, α) + (1− λ)(y, β) = (λx + (1− λ)y, λα + (1− λ)β) ∈ epi(f),

so epi(f) is a convex set. In the other direction, let epi(f) be a convex set
and consider two points x,y ∈ dom(f), λ ∈ [0, 1]. By convexity of epi(f),
we have

epi(f) 3 λ(x, f(x))+(1−λ)(y, f(y)) = (λx+(1−λ)y, λf(x)+(1−λ)f(y)),

and this is just a different way of writing (1.1).
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Lemma 1.5 (Jensen’s inequality). Let f be convex, x1, . . . ,xm ∈ dom(f),
λ1, . . . , λm ∈ R+ such that

∑m
i=1 λi = 1. Then

f

(
m∑
i=1

λixi

)
≤

m∑
i=1

λif(xi).

For m = 2, this is (1.1). The proof of the general case is Exercise 1.

Lemma 1.6. Let f be convex and suppose that dom(f) is open. Then f is con-
tinuous.

This is not entirely obvious (see Exercise 2), and it becomes false if we
consider convex functions over general vector spaces. What saves us is
that Rd has finite dimension.

As an example, let us consider f(x1, x2) = x21 +x22. The graph of f is the
unit paraboloid in R3 which looks convex. However, to verify (1.1) directly
is somewhat cumbersome. Next, we develop better ways to do this.

1.3.1 First-order characterization of convexity

If f is differentiable, convexity can be characterized as follows.

Lemma 1.7 ([BV04, 3.1.3]). Suppose that dom(f) is open and that f is differ-
entiable; in particular, the gradient (vector of partial derivatives)

∇f(x) :=

(
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xd

)
exists at every point x ∈ dom(f). Then f is convex if and only if dom(f) is
convex and

f(y) ≥ f(x) +∇f(x)>(y − x) (1.2)

holds for all x,y ∈ dom(f).

Geometrically, this means that for all x ∈ dom(f), the graph of f lies
above its tangent hyperplane at the point (x, f(x)); see Figure 1.4.

For f(x1, x2) = x21 + x22, we have ∇f(x) = (2x1, 2x2), hence (1.2) boils
down to

y21 + y22 ≥ x21 + x22 + 2x1(y1 − x1) + 2x2(y2 − x2),

5



x y

f(y)

f(x) +∇f(x)>(y − x)

Figure 1.4: First-order characterization of convexity

which after some rearranging of terms is equivalent to

(y1 − x1)2 + (y2 − x2)2 ≥ 0,

hence true. There are relevant convex functions that are not differentiable,
see Figure 1.5 for an example. More generally, Exercise 7 asks you to prove
that the `1-norm (or 1-norm) f(x) = ‖x‖1 is convex.

x

f(x) = |x|

0

Figure 1.5: A non-differentiable convex function

1.3.2 Second-order characterization of convexity

If f is twice differentiable, convexity can be characterized as follows.
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Lemma 1.8 ([BV04, 3.1.4]). Suppose that dom(f) is open and that f is twice
differentiable; in particular, the Hessian (matrix of second partial derivatives)

∇2f(x) =


∂2f(x)
∂x1∂x1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xd

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2∂x2

· · · ∂2f(x)
∂x2∂xd...

... · · · ...
∂2f(x)
∂xd∂x1

∂2f(x)
∂xd∂x2

· · · ∂2f(x)
∂xd∂xd


exists at every point x ∈ dom(f) and is symmetric. Then f is convex if and only
if dom(f) is convex, and for all x ∈ dom(f), we have

∇2f(x) � 0 (i.e.∇2f(x) is positive semidefinite). (1.3)

(A symmetric matrix M is positive semidefinite if x>Mx ≥ 0 for all x, and
positive definite if x>Mx > 0 for all x.)

Geometrically, this means that the graph of f has nonnegative curva-
ture everywhere and hence “looks like a bowl”. For f(x1, x2) = x21 + x22,
we have

∇2f(x) =

(
2 0
0 2

)
,

which is a positive definite matrix. In higher dimensions, the same ar-
gument can be used to show that the squared distance dy(x) = ‖x −
y‖2 to a fixed point y is a convex function; see Exercise 3. The non-
squared Euclidean distance ‖x − y‖ is also convex in x, as a consequence
of Lemma 1.9(ii) below and the fact that every seminorm (in particular
the Euclidean norm ‖x‖) is convex (Exercise 8). The squared Euclidean
distance has the advantage that it is differentiable, while the Euclidean
distance itself (whose graph is an “ice cream cone” for d = 2) is not.

1.3.3 Operations that preserve convexity

There are two important operations that preserve convexity.

Lemma 1.9 (Exercise 4).

(i) Let f1, f2, . . . , fm be convex functions, λ1, λ2, . . . , λm ∈ R+. Then f :=∑m
i=1 λifi is convex on dom(f) :=

⋂m
i=1 dom(fi).
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(ii) Let f be a convex function with dom(f) ⊆ Rd, g : Rm → Rd an affine
function, meaning that g(x) = Ax + b, for some matrix A ∈ Rd×m and
some vector b ∈ Rd. Then the function f ◦ g (that maps x to f(Ax + b))
is convex on dom(f ◦ g) := {x ∈ Rm : g(x) ∈ dom(f)}.

1.4 Minimizing convex functions

The main feature that makes convex functions attractive in optimization
is that every local minimum is a global one, so we cannot “get stuck” in
local optima. This is quite intuitive if we think of the graph of a convex
function as being bowl-shaped.

Definition 1.10. A local minimum of f : dom(f) → R is a point x such that
there exists ε > 0 with

f(x) ≤ f(y) ∀y ∈ dom(f) satisfying ‖y − x‖ < ε.

Lemma 1.11. Let x? be a local minimum of a convex function f : dom(f)→ R.
Then x? is a global minimum, meaning that

f(x?) ≤ f(y) ∀y ∈ dom(f).

Proof. Suppose there exists y ∈ dom(f) such that f(y) < f(x?) and define
y′ := λx? + (1 − λ)y for λ ∈ (0, 1). From convexity (1.1), we get that
that f(y′) < f(x?). Choosing λ so close to 1 that ‖y′ − x?‖ < ε yields a
contradiction to x? being a local minimum.

This does not mean that a convex function always has a global mini-
mum. Think of f(x) = x as a trivial example. But also if f is bounded from
below over dom(f), it may fail to have a global minimum (f(x) = ex).
To ensure the existence of a global minimum, we need additional condi-
tions. For example, it suffices if outside some ball B, all function values
are larger than some value f(x),x ∈ B. In this case, we can restrict f to
B, without changing the smallest attainable value. And on B (which is
compact), f attains a mimimum by continuity (Lemma 1.6). An easy ex-
ample: for f(x1, x2) = x21 + x22, we know that outside any ball containing
0, f(x) > f(0) = 0.

Another easy condition in the differentiable case is given by the follow-
ing
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Lemma 1.12. Suppose that f is convex and differentiable over an open domain
dom(f). Let x ∈ dom(f). If∇f(x) = 0, then x is a global minimum.

Proof. Suppose that∇f(x) = 0. According to Lemma 1.7, we have

f(y) ≥ f(x) +∇f(x)>(y − x) = f(x)

for all y ∈ dom(f), so x is a global minimum.

The converse is also true and a corollary of Lemma 1.17 below [BV04,
4.2.3].

Lemma 1.13. Suppose that f is convex and differentiable over an open domain
dom(f). Let x ∈ dom(f). If x is a global minimum then∇f(x) = 0.

1.4.1 Strictly convex functions

In general, a global minimum of a convex function is not unique (think of
f(x) = 0 as a trivial example). However, if we forbid “flat” parts of the
graph of f , a global minimum becomes unique (if it exists at all).

Definition 1.14 ([BV04, 3.1.1]). A function f : dom(f) → R is strictly con-
vex if (i) dom(f) is convex and (ii) for all x 6= y ∈ dom(f) and all λ ∈ (0, 1),
we have

f(λx + (1− λ)y) < λf(x) + (1− λ)f(y). (1.4)

This means that the open line segment connecting (x, f(x)) and (y, f(y))
is pointwise strictly above the graph of f . For example, f(x) = x2 is strictly
convex. More generally (and following up on Lemma 1.8), if the Hessian
∇2f(x) is positive definite everywhere, then f is strictly convex [BV04,
3.1.4]. The converse is false, though: f(x) = x4 is strictly convex but has
vanishing second derivative at x = 0.

Lemma 1.15. Let f : dom(f) → R be strictly convex. Then f has at most one
global minimum.

Proof. Suppose x? 6= y? are two global mimima of value fmin, and let z =
1
2
x? + 1

2
y?. By (1.4),

f(z) <
1

2
fmin +

1

2
fmin = fmin,

a contradiction to x? and y? being global minima.
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1.4.2 Example: Least squares

Suppose we want to fit a hyperplane to a set of data points x1, . . . ,xm in
Rd, based on the hypothesis that the points actually come (approximately)
from on a hyperplane. A classical method for this is least squares. For
concreteness, let us do this in R2. Suppose that the data points are

(1, 10), (2, 11), (3, 11), (4, 10), (5, 9), (6, 10), (7, 9), (8, 10),

Figure 1.6 (left).

x

y

x

y

Figure 1.6: Data points in R2 (left) and least-squares fit (right)

Also, for simplicity (and quite appropriately in this case), let us restrict
to fitting a linear model, of more formally to fit non-vertical lines of the
form y = w0 + w1x. If (xi, yi) is the i-th data point, the least squares fit
chooses w0, w1 such that the least squares objective

f(w0, w1) =
8∑
i=1

(w1xi + w0 − yi)2

is minimized. It easily follows from Lemma 1.9 that f is convex. In fact,

f(w0, w1) = 204w2
1 + 72w1w0 − 706w1 + 8w2

0 − 160w0 + 804, (1.5)
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so we can check convexity directly using the second order condition. We
have gradient

∇f(w0, w1) = (72w1 + 16w0 − 160, 408w1 + 72w0 − 706)

and Hessian

∇2(w0, w1) =

(
16 72
72 408

)
.

A 2 × 2 matrix is positive definite if the diagonal elements and the deter-
minant are positive, which is the case here, so f is actually strictly convex
and has a unique global minimum. To find it, we solve the linear sys-
tem∇f(w0, w1) = (0, 0) of two equations in two unknowns and obtain the
global minimum

(w?0, w
?
1) =

(43

4
,−1

6

)
.

Hence, the “optimal” line is

y = −1

6
x+

43

4
,

see Figure 1.6 (right).

1.4.3 Constrained Minimization

Frequently, we are interested in minimizing a convex function only over a
subset X of its domain.

Definition 1.16. Let f : dom(f) → R be convex and let X ⊆ dom(f) be a
convex set. x ∈ X is a minimizer of f over X if

f(x) ≤ f(y) ∀y ∈ X.

If f is differentiable, minimizers of f over X have a very useful charac-
terization.

Lemma 1.17 ([BV04, 4.2.3]). Suppose that f is convex and differentiable over
an open domain dom(f), and let X ⊆ dom(f) be a convex set. x? ∈ X is a
minimizer of f over X if and only if

∇f(x?)>(x− x?) ≥ 0 ∀x ∈ X.
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Geometrically, this means that X is contained in the halfspace {x ∈
Rd : ∇f(x?)>(x − x?) ≥ 0} (normal vector ∇f(x?) pointing into the halfs-
pace); see Figure 1.7. In still other words, x− x? forms a non-obtuse angle
with ∇f(x?) for all x ∈ X . Applying this with X = dom(f), we recover
Lemma 1.12 and its converse [BV04, 4.2.3].

x?

∇f(x?)

x

X

∇f(x?)>(x− x?) ≥ 0

Figure 1.7: Optimality condition for constrained optimization

We typically write constrained minimization problems in the form

argmin{f(x) : x ∈ X} (1.6)

or
minimize f(x)
subject to x ∈ X . (1.7)

1.5 Existence of a minimizer

The existence of a minimizer (or a global minimum if X = dom(f)) will
be an assumption made by most minimization algorithms that we discuss
later. In practice, such algorithms are being used (and often also work) if
there is no minimizer. By “work”, we mean in this case that they compute
a point x such that f(x) is close to infy∈X f(y), assuming that the infimum
is finite (as in f(x) = ex). But a sound theoretical analysis usually re-
quires the existence of a minimizer. Therefore, this section develops tools
that may helps us in analyzing whether this is the case for a given convex
function.
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1.5.1 Sublevel sets and the Weierstrass Theorem

Definition 1.18. Let f : dom(f)→ R, α ∈ R. The set

f≤α := {x ∈ dom(f) : f(x) ≤ α}

is the α-sublevel set of f ; see Figure 1.8

α

f≤α f≤αf≤α

Figure 1.8: Sublevel set of a non-convex function (left) and a convex func-
tion (right)

It is easy to see from the definition that every sublevel set of a con-
vex function is convex. Moreover, as a consequence of continuity of f (if
dom(f) is open), sublevel sets are closed. The following (known as the
Weierstrass Theorem) just formalizes an argument that we have made ear-
lier.

Theorem 1.19. Let f : dom(f) → R be a convex function, dom(f) open, and
suppose there is a nonempty and bounded sublevel set f≤α. Then f has a global
minimum.

Proof. We know that f—as a continuous function over dom(f)—attains a
minimum over the closed and bounded (= compact) set f≤α ⊆ dom(f) at
some x?. This x? is also a global minimum as it has value f(x?) ≤ α, while
any x /∈ f≤α has value f(x) > α.
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1.6 Examples

In the following two sections, we give two examples of convex function
minimization tasks that arise from machine learning applications.

1.6.1 Handwritten digit recognition

Suppose you want to write a program that recognizes handwritten deci-
mal digits 0, 1, . . . , 9. You have a set P of grayscale images (28× 28 pixels,
say) that represent handwritten decimal digits, and for each image x ∈ P ,
you know the digit d(x) ∈ {0, . . . , 9} that it represents, see Figure 1.9. You
want to train your program with the set P , and after that use it to recognize
handwritten digits in arbitrary 28× 28 images.

Figure 1.9: Some training images from the MNIST data set (picture from
http://corochann.com/mnist-dataset-introduction-1138.
html

The classical approach is the following. We represent an image as a
feature vector x ∈ R784, where xi is the gray value of the i-th pixel (in some
order). During the training phase, we compute a matrix W ∈ R10×784 and
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then use the vector y = Wx ∈ R10 to predict the digit seen in an arbitrary
image x. The idea is that yj, j = 0, . . . , 9 corresponds to the probability of
the digit being j. This doesn’t work directly, since the entries of y may be
negative and generally do not sum up to 1. But we can convert y to a vec-
tor z of actual probabilities, such that a small yj leads to a small probability
zj and a large yj to a large probabiliy zj . How to do this is not canonical,
but here is a well-known formula that works:

zj = zj(y) =
eyj∑9
k=0 e

yk
. (1.8)

The classification then simply outputs digit j with probability zj . The
matrix W is chosen such that it (approximately) minimizes the classifica-
tion error on the training set P . Again, it is not canonical how we measure
classification error; here we use the following loss function to evaluate the
error induced by a given matrix W .

`(W ) = −
∑
x∈P

ln zd(x)(Wx) =
∑
x∈P

(
ln
( 9∑
j=0

e(Wx)j
)
− (Wx)d(x)

)
. (1.9)

This function “punishes” images for which the correct digit j has low
probability zj (corresponding to a significantly negative value of log zj). In
an ideal world, the correct digit would always have probability 1, result-
ing in `(W ) = 0. But under (1.8), probabilities are always strictly between
0 and 1, so we have `(W ) > 0 for all W .

Exercise 5 asks you to prove that ` is convex. In Exercise 6, you will
characterize the situations in which ` has a global minimum.

1.6.2 Master’s Admission

The computer science department of a well known Swiss university is ad-
mitting top international students to its MSc program, in a competitive
application process. Applicants are submitting various documents (GPA,
TOEFL test scores, GRE test scores, reference letters,. . . ). During the evalu-
ation of an application, the admission committee would like to compute a
(rough) forecast of the applicant’s performance in the MSc program, based
on the submitted documents.1

1Any resemblance to real departments is purely coincidental. Also, no serious depart-
ment will base performance forecasts on data from 10 students, as we will do it here.
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Data on the actual performance of admitted students is available. To
keep things simple in the following example, let’s base the forecast on GPA
(grade point average) and TOEFL (Test of English as a Foreign Language)
only. GPA scores are normalized to a scale with a minimum of 0.0 and a
maximum of 4.0, where admission starts from 3.5. TOEFL scores are on an
integer scale between 0 and 120, where admission starts from 100.

Table 1.1 contains the known data. GGPA (graduation grade point av-
erage on a Swiss grading scale) is the average grade obtained by an ad-
mitted student over all courses in the MSc program. The Swiss scale goes
from 1 to 6 where 1 is the lowest grade, 6 is the highest, and 4 is the lowest
passing grade.

GPA TOEFL GGPA
3.52 100 3.92
3.66 109 4.34
3.76 113 4.80
3.74 100 4.67
3.93 100 5.52
3.88 115 5.44
3.77 115 5.04
3.66 107 4.73
3.87 106 5.03
3.84 107 5.06

Table 1.1: Data for 10 admitted students: GPA and TOEFL scores (at time
of application), GGPA (at time of graduation)

As in Section 1.4.2, we are attempting a linear regression with least
squares fit, i.e. we are making the hypothesis that

GGPA ≈ w0 + w1 ·GPA + w2 ·TOEFL. (1.10)

However, in our scenario, the GPA scores span a range of only 0.5 while
the TOEFL scores span a range of 20. The resulting least squares objective
would be somewhat ugly; we already saw this in our previous example
(1.5), where the data points had large second coordinate, resulting in the
w1-scale being very different from the w2-scale. This time, we normalize
first.
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The general setting is this: we have n inputs x1, . . . ,xn, where each vec-
tor xi ∈ Rd consists of d input variables; then we have n outputs y1, . . . , yn ∈
R. Each pair (xi, yi) is an observation. In our case, d = 2, n = 10, and for
example, ((3.52, 100), 3.92) is an observation (of a student failing, unfortu-
nately).

We first want to assume that the inputs and outputs are centered, mean-
ing that

n∑
i=1

xi = 0,
n∑
i=1

yi = 0.

This can be achieved by simply subtracting the mean x̄ = 1
n

∑n
i=1 xi from

every input and the mean ȳ = 1
n

∑n
i=1 yi from every output. In our exam-

ple, this yields the numbers in Table 1.2 (left).

GPA TOEFL GGPA
-0.24 -7.2 -0.94
-0.10 1.8 -0.52
-0.01 5.8 -0.05
-0.02 -7.2 -0.18
0.17 -7.2 0.67
0.12 7.8 0.59
0.01 7.8 0.19

-0.10 -0.2 -0.12
0.11 -1.2 0.17
0.07 -0.2 0.21

GPA TOEFL GGPA
-2.04 -1.28 -0.94
-0.88 0.32 -0.52
-0.05 1.03 -0.05
-0.16 -1.28 -0.18
1.42 -1.28 0.67
1.02 1.39 0.59
0.06 1.39 0.19

-0.88 -0.04 -0.12
0.89 -0.21 0.17
0.62 -0.04 0.21

Table 1.2: Centered observations (left); normalized inputs (right)

Centering has the effect that the global minimum w∗ of the least squares
objective

f(w?) =
n∑
i=1

(w0 +
d∑
j=1

wjxij − yi)2

satisfies w?0 = 0 (Exercise 9), so that we can simply omit this variable in the
sequel.

Finally, we assume that all d input variables are on the same scale,
meaning that

1

n

n∑
i=1

x2ij = 1, j = 1, . . . , d.
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To achieve this, we simply need to multiply xij by
√
n/
∑d

i=1 x
2
ij for all

i, j. For our data set, the resulting normalized data are shown in Table 1.2
(right). Now the least squares objective (after omitting w0) is

f(w1, w2) =
10∑
i=1

(w1xi1 + w2xi2 − yi)2

≈ 10w2
1 + 10w2

2 + 1.99w1w2 − 8.7w1 − 2.79w2 + 2.09.

This is minimized at

w? = (w?1, w
?
2) ≈ (0.43, 0.097),

so if our initial hypothesis (1.10) is true, we should have

yi ≈ y?i = 0.43xi1 + 0.097xi2 (1.11)

in the normalized data. This can quickly be checked, and the results aren’t
perfect, but not too bad, either; see Table 1.3 (ignore the last column for
now).

xi1 xi2 yi y?i z?i
-2.04 -1.28 -0.94 -1.00 -0.87
-0.88 0.32 -0.52 -0.35 -0.37
-0.05 1.03 -0.05 0.08 -0.02
-0.16 -1.28 -0.18 -0.19 -0.07
1.42 -1.28 0.67 0.49 0.61
1.02 1.39 0.59 0.57 0.44
0.06 1.39 0.19 0.16 0.03

-0.88 -0.04 -0.12 -0.38 -0.37
0.89 -0.21 0.17 0.36 0.38
0.62 -0.04 0.21 0.26 0.27

Table 1.3: Outputs y?i predicted by the linear model (1.11) and by the model
z?i = 0.43xi1 that simply ignores the second input variable

What we also see from (1.11) is that the first input variable (GPA) has a
much higher influence on the output (GGPA) than the second one (TOEFL).
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In fact, if we drop the second one altogether, we obtain outputs z?i (last col-
umn in Table 1.3) that seem equivalent to the predicted outputs y?i within
the level of noise that we have anyway.

We conclude that TOEFL scores are probably not indicative for the per-
formance of admitted students, so the admission committtee should not
care too much about them. Requiring a minimum score of 100 might make
sense, but whenever an applicant reaches at least this score, the actual
value does not matter.

The LASSO. So far, we have computed linear functions y = 0.43x1 +
0.097x2 and z = 0.43x1 that “explain” the historical data from Table 1.1.
If we believe that hypothesis (1.10) also holds for future applicants, we
can indeed use these functions to make performance forecasts. Using z
instead of y introduces a bias, though. For example, if the average TOEFL
score of future applicants is above 110, z will underestimate performance
by ignoring the (small) positive effect of a high TOEFL score. The advan-
tages of z over y are (i) better interpretability (z “knows” that TOEFL is
non-indicative, while y doesn’t); and (ii) possibly more stable estimates
(variance caused by a non-indicative input variable is removed).

The question is: how can we in general improve the quality of our fore-
cast in the presence of non-indicative input variables such as the TOEFL
score in our example? We can (as done above) just forget about a vari-
able of weight close to 0 in the least squares solution. However, for this,
we need to define what it means to be close to 0; and it may happen
that small changes in the data lead to different variables being dropped
if their weights are around the threshold. A more elegant solution has
been suggested by Tibshirani in 1996 [Tib96]. Instead of minimizing the
least squares objective globally, it is minimized over a suitable `1-ball (ball
in the 1-norm):

minimize
∑n

i=1 ‖w>xi − yi‖2
subject to ‖w‖1 ≤ R, (1.12)

where R ∈ R+ is some parameter. Here w ∈ Rd is the vector of optimiza-
tion variables. In our case, w = (w1, w2)), and if we for example

minimize f(w1, w2) = 10w2
1 + 10w2

2 + 1.99w1w2 − 8.7w1 − 2.79w2 + 2.09
subject to |w1|+ |w2| ≤ 0.2,

(1.13)
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we obtain w? = (w?1, w
?
2) = (0.2, 0): the non-indicative TOEFL score has

disappeared automatically! For R = 0.3, the same happens (with w?1 = 0.3,
respectively). For R = 0.4, the TOEFL score starts creeping back in: we
get (w?1, w

?
2) ≈ (0.36, 0.036). For R = 0.5, we have (w?1, w

?
2) ≈ (0.41, 0.086),

while for R = 0.6 (and all larger values of R), we recover the original
solution (w?1, w

?
2) = (0.43, 0.097).

This phenomenon is not restricted to d = 2. The constrained mini-
mization problem (1.12) is called the LASSO (least absolute shrinkage and
selection operator) and has the tendency to assign weight 0 to and thus
remove non-indicative input variables, where R controls how aggressive
the selection is, and how much bias it potentially introduces (the smaller
the value R, the more aggressive the selection, and the higher the bias).

In our example, it’s easy to get an intuition why this works. Let’s look
at the case R = 0.2. The smallest value attainable in (1.13) is the smallest α
such that that the (elliptical) sublevel set f≤α of the least squares objective
f still intersects the `1-ball {(w1, w2) : |w1|+|w2| ≤ 0.2}. This smallest value
turns out to be α = 0.75, see Figure 1.10. For this value of α, the sublevel
set intersects the `1-ball exactly in one point, namely (0.2, 0).

(0.43, 0.097)

a

b

|w1|+ |w2| ≤ 0.2

10w2
1 + 10w2

2 + 1.99w1w2 − 8.7w1 − 2.79w2 + 2.09 = 0.75

Figure 1.10: Lasso

At (0.2, 0), the ellipse {(w1, w2) : f(w1, w2) = α} is “vertical enough”
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to just intersect the corner of the `1-ball. The reason is that the center of
the ellipse is relatively close to the w1-axis, when compared to its size. As
R increases, the relevant value of α decreases, the ellipse gets smaller and
less vertical around thew1-axis; until it eventually stops intersecting the `1-
ball {(w1, w2) : |w1|+ |w2| ≤ R} in a corner (dashed situation in Figure 1.10,
for R = 0.4).

Even though we have presented a toy example in this section, the back-
ground is real. The theory of admission and in particular performance
forecasts has been developed in a recent PhD thesis by Zimmermann [Zim16].

1.7 Exercises

Exercise 1. Prove Jensen’s inequality (Lemma 1.5)!

Exercise 2. Prove that a convex funtion is continuous (Lemma 1.6)!
Hint: First prove that a convex function f is bounded on any cube C =

[l1, u1]× [l2, u2]×· · ·× [ld, ud] ⊆ dom(f), with the maximum value occuring on
some corner of the cube (a point z such that zi ∈ {li, ui} for all i). Then use this
fact to show that—given x ∈ dom(f), ε > 0—all y in a sufficiently small cube
around x satisfy |f(y)− f(x)| < ε.

Exercise 3. Prove that the function dy : Rd → R, x 7→ ‖x − y‖2 is strictly
convex for any y ∈ Rd. (This is essentially an exercise in computing gradients
and Hessians.)

Exercise 4. Prove Lemma 1.9! Can (ii) be generalized to show that for two convex
functions f, g, the function f ◦ g is convex as well?

Exercise 5. Consider the function ` defined in (1.9). Prove that ` is convex!

Exercise 6. Consider the function ` defined in (1.9). Let us call an argument
matrix W a separator for P if for all x ∈ P ,

(Wx)d(x) =
9

max
j=0

(Wx)j,

i.e. under (1.8), the correct digit has highest probability (possibly along with other
digits). A separator is trivial if for all x ∈ P and all i, j ∈ {0, . . . , 9},

(Wx)i = (Wx)j.
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For example, whenever the rows of W are pairwise identical, we obtain a trivial
separator. But depending on the data, there may be other trivial separators. For
example, if some pixel is black (gray value 0) in all images, arbitrarily changing
the entries in the corresponding column of a trivial separator gives us another
trivial separator. For a trivial separator W , (1.9) yields `(W ) = |P | ln 10.

Prove the following statement: ` has a global minimum if and only if all sepa-
rators are trivial.

As a special case, consider the situation in which there exists a strong (and
in particular nontrivial) separator: a matrix W ? such that for all x ∈ P and all
j 6= d(x),

(W ?x)d(x) > (W ?x)j,

i.e. the correct digit has unique highest probability. In this case, it is easy to see
that `(λW ?)→λ→∞ 0, so we cannot have a global minimum, as infW (`(W )) = 0
is not attainable.

Exercise 7. Prove that the function f(x) = ‖x‖1 =
∑d

i=1 |xi| (`1-norm) is con-
vex!

Exercise 8. A seminorm is a function f : Rd → R satisfying the following two
properties for all x,y ∈ Rd and all λ ∈ R.

(i) f(λx) = |λ|f(x),

(ii) f(x + y) ≤ f(x) + f(y) (triangle inequality).

Prove that every seminorm is convex!

Exercise 9. Suppose that we have centered observations (xi, yi) such that
∑n

i=1 xi =
0,
∑n

i=1 yi = 0. Let w∗ be the global minimum of the least squares objective

f(w?) =
n∑
i=1

(w0 +
d∑
j=1

wjxij − yi)2.

Prove that w?0 = 0.
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