
Chapter 3

Projected and Proximal Gradient
Descent

Contents
3.1 The Algorithm . 39
3.2 Constrained minimization: O(1/"2) steps 39
3.3 Smooth constrained minimization: O(1/") steps 40
3.4 Strongly convex constrained minimization:

O(log(1/")) steps . 43
3.5 Projecting onto `1-balls . 44
3.6 Proximal gradient descent . 49

3.6.1 The proximal gradient algorithm 50
3.6.2 Convergence in O(1/") steps 51

3.7 Exercises . 52

38

3.1 The Algorithm
Another way to control gradients in (2.5) is to minimize f over a closed
convex subset X ✓ Rd. For example, we may have a constrained opti-
mization problem to begin with (for example the LASSO in Section 1.6.2),
or we happen to know some region X containing a global minimum x

?, so
that we can restrict our search to that region. In this case, gradient descent
also works, but we need an additional projection step. After all, it can hap-
pen that some iteration of (2.1) takes us “into the wild” (out of X) where
we have no business to do. Projected gradient descent is the following
modification. We choose x0 2 X arbitrary and for t � 0 define

yt+1 := xt � �rf(xt), (3.1)
xt+1 := ⇧X(yt+1) := argmin

x2X
kx� yt+1k

2. (3.2)

This means, after each iteration, we project the obtained iterate yt+1 back
to X . This may be very easy (think of X as the unit ball in which case we
just have to scale yt+1 down to length 1 if it is longer). But it may also be
very difficult. In general, computing ⇧X(yt+1) means to solve an auxiliary
convex constrained minimization problem in each step! Here, we’re just
assuming that we can do this. The projection is well-defined since dy :=
kx� yk

2 has bounded sublevel sets. Moreover, dy(x) is strictly convex, so
the minimum over X (that exists by continuity of dy and compactness of X
intersected with any nonempty sublevel set) is unique by Lemma 1.15.

3.2 Constrained minimization: O(1/"2) steps
To show that the vanilla analysis still goes through, we need the following

Fact 3.1. Let X ✓ Rd convex, x 2 X,y 2 Rd. Then

(i) (x� ⇧X(y))>(y � ⇧X(y)) 0.

(ii) kx� ⇧X(y)k2 + ky � ⇧X(y)k2 kx� yk
2.

Proof. ⇧X(y) is by definition a minimizer of the (differentiable) convex
function dy(x) = kx� yk

2 over X , and (i) is just the equivalent optimality
condition of Lemma 1.17. Part (ii) follows from (i) via the (by now well-
known) equation 2v>

w = kvk
2 + kwk

2
� kv �wk

2.

39

If we minimize f over a compact convex set X , we get the existence of
a minimizer and a bound R for the initial distance to it for free; assuming
that f is continuously differentiable, we also have a bound L for the gradi-
ent norms over X . In this case, our vanilla analysis yields a much more
useful result than the one in Theorem 2.1, with the same stepsize and the
same number of steps.

Theorem 3.2. Let f : Rd
! R be convex and differentiable, X ✓ Rd closed and

convex, x? a minimizer of f over X ; furthermore, suppose that kx0 � x
?
k R,

and that krf(x)k L for all x 2 X . Choosing the constant stepsize

� :=
R

L
p
T
,

projected gradient descent (3.1) with x0 2 X yields

1

T

T�1X

t=0

f(xt)� f(x?)
RL
p
T
.

Proof. The only required changes to the vanilla analysis are that in steps
(2.3) and (2.4), xt+1 needs to be replaced by yt+1 as this is the real next
(non-projected) gradient descent iterate after these steps, we therefore get

f(xt)� f(x?)
1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kyt+1 � x

?
k
2
�
. (3.3)

From Fact 3.1 (ii) (with x = x
?,y = yt+1), we obtain kxt+1�x

?
k
2
 kyt+1�

x
?
k
2, hence we get

f(xt)� f(x?)
1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
�

and return to the previous vanilla analysis for the remainder of the proof.

3.3 Smooth constrained minimization: O(1/") steps
First, we define smoothness relative to a closed and convex subset X ✓ Rd.

40

Definition 3.3. Let f : Rd
! R be convex and differentiable, L 2 R+. Fur-

thermore, let X ✓ Rd be a closed convex set. f is called smooth over X (with
parameter L) if

f(y) f(x) +rf(x)>(y � x) +
L

2
kx� yk

2, 8x,y 2 X. (3.4)

For example, the globally non-smooth function f(x) = x4 is smooth
over any closed interval X , but with L depending on X , see Exercise 16.

To minimize a smooth f over X , we use projected gradient descent
again. The runtime turns out to be the same as in the unconstrained case.

Theorem 3.4. Let f : Rd
! R be convex and differentiable. Let X ✓ Rd be

a closed convex set, and assume that there is a minimizer x
? of f over X ; fur-

thermore, suppose that f is smooth over X with parameter L according to (3.4).
When choosing the stepsize

� :=
1

L
,

projected gradient descent (3.1) with x0 2 X satisfies the following two proper-
ties.

(i) Function values are monotone decreasing (this is not obvious from the fol-
lowing inequality, but you are asked to prove this in Exercise 19):

f(xt+1) f(xt)�
1

2L
krf(xt)k

2 +
L

2
kyt+1 � xt+1k

2, t � 0.

(ii)
f(xT)� f(x?)

L

2T
kx0 � x

?
k
2, T > 0.

Proof. For (i), we proceed similar to the proof of the “unconstrained” The-
orem 2.6, except that we now need to deal with projected gradient descent.
We again start from smoothness (3.4) but then use yt+1 = xt � rf(xt)/L,

41

followed by the usual equation 2v>
w = kvk

2 + kwk
2
� kv �wk

2:

f(xt+1) f(xt) +rf(xt)
>(xt+1 � xt) +

L

2
kxt � xt+1k

2

= f(xt)� L(yt+1 � xt)
>(xt+1 � xt) +

L

2
kxt � xt+1k

2

= f(xt)�
L

2

�
kyt+1 � xtk

2 + kxt+1 � xtk
2
� kyt+1 � xt+1k

2
�

+
L

2
kxt � xt+1k

2

= f(xt)�
L

2
kyt+1 � xtk

2 +
L

2
kyt+1 � xt+1k

2

= f(xt)�
1

2L
krf(xt)k

2 +
L

2
kyt+1 � xt+1k

2.

This proves (i). The plan is as in the proof of Theorem 2.6 to use the result-
ing inequality

1

2L

T�1X

t=0

krf(xt)k
2
 f(x0)� f(xT) +

L

2

T�1X

t=0

kyt+1 � xt+1k
2 (3.5)

to control the sum of squared gradients in the bound (2.5) of the vanilla
analysis. We have shown in the proof of Theorem 3.2 that (2.5) also holds
in the constrained case, so this is a good start. Unfortunately, (3.5) now has
an extra term compared to the bound (2.8) that we derived in the uncon-
strained case. To take care of this term, we observe that we can actually
improve (2.5) in such a way that the extra term is absorbed. Let us go back
to the “constrained” inequality (3.3)

f(xt)� f(x?)
1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kyt+1 � x

?
k
2
�
,

to which we then applied Fact 3.1(ii) to get back on the vanilla track.
In doing so, we dropped a term that now becomes significant. In (3.3),
Fact 3.1(ii) actually yields kxt+1 �x

?
k
2 + kyt+1 �xt+1k

2
 kyt+1 �x

?
k
2 and

not just kxt+1 � x
?
k
2
 kyt+1 � x

?
k
2. Using this, we further get a critical

improvement on the bound for f(xt)� f(x?) which is now

1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
� kyt+1 � xt+1k

2
�
. (3.6)

42

Summing this up for t = 0, . . . , T � 1 (and using � = 1/L), we get

T�1X

t=0

(f(xt)�f(x?))
1

2L

T�1X

t=0

krf(xt)k
2+

L

2
kx0�x

?
k
2
�
L

2

T�1X

t=0

kyt+1�xt+1k
2.

Plugging in the bound (3.5) for the sum of squared gradients, the extra
term of L

2

PT�1
t=0 kyt+1 � xt+1k

2 is exactly absorbed and we arrive at the
bound (2.9) from which statement (ii) of the theorem follows as before.

3.4 Strongly convex constrained minimization:
O(log(1/")) steps

Assuming that f is smooth and strongly convex over a set X , we can also
prove fast convergence of projected gradient descent. This does not re-
quire any new ideas, we have seen all the ingredients before.

We first need to define strong convexity with respect to a set X which
reads as expected.

Definition 3.5. Let f : Rd
! R be convex and differentiable, µ 2 R+, µ > 0.

Furthermore, let X ✓ Rd be a closed convex set. f is called strongly convex
(with parameter µ) over X if

f(y) � f(x) +rf(x)>(y � x) +
µ

2
kx� yk

2, 8x,y 2 X. (3.7)

Theorem 3.6. Let f : Rd
! R be convex and differentiable. Let X ✓ Rd be

a closed and convex set and suppose that f is smooth over X with parameter L
according to (3.4) and strongly convex over X with parameter µ > 0 according
to (6.6). Exercise 20 asks you to prove that there is a unique minimizer x

? of f
over X . Choosing

� :=
1

L
,

projected gradient descent (3.1) with arbitrary x0 satisfies the following two prop-
erties.

(i) Squared distances to x
? are geometrically decreasing:

kxt+1 � x
?
k
2

⇣
1�

µ

L

⌘
kxt � x

?
k
2, t � 0.

43

(ii)
f(xt)� f(x?)

L

2

⇣
1�

µ

L

⌘t

kx0 � x
?
k
2.

Proof. In the strongly convex case, the “constrained” vanilla bound (3.6)

1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
� kyt+1 � xt+1k

2
�

on f(xt)� f(x?) can be strengthened to

1

2�

�
�2
krf(xt)k

2 + kxt � x
?
k
2
� kxt+1 � x

?
k
2
� kyt+1 � xt+1k

2
�
�
µ

2
kxt�x

?
k
2

(3.8)
Now we proceed as in the proof of Theorem 2.11. Rewriting the latter

bound into a bound on kxt+1 � x
?
k
2 yields

kxt+1�x
?
k
2
 2�(f(x?)�f(xt))+�2

krf(xt)k
2+(1�µ�)kxt�x

?
k
2
�kyt+1�xt+1k

2.

Again, we show that the noise in this bound disappears. From Theo-
rem 3.4 (i), we know that

f(x?)� f(xt) f(xt+1)� f(xt) �
1

2L
krf(xt)k

2 +
L

2
kyt+1 � xt+1k

2,

and hence the noise can be bounded as follows, using � = 1/L:

2�(f(x?)� f(xt)) + �2
krf(xt)k

2
� kyt+1 � xt+1k

2

=
2

L
(f(x?)� f(xt)) +

1

L2
krf(xt)k

2
� kyt+1 � xt+1k

2

 �
1

L2
krf(xt)k

2 + kyt+1 � xt+1k
2 +

1

L2
krf(xt)k

2
� kyt+1 � xt+1k

2 = 0.

3.5 Projecting onto `1-balls
`1-regularized problems appear among the most commonly used mod-
els in machine learning and signal processing, and we have already dis-
cussed the Lasso as an important example of that class. We will now ad-
dress how to perform projected gradient as an efficient optimization for

44

`1-constrained problems. Let

X = B1(R) :=
n
x 2 Rd : kxk1 =

dX

i=1

|xi| R
o

be the `1-ball of radius R > 0 around 0, i.e. the set of all points with 1-
norm at most R. Our goal is to compute ⇧X(v) for a given vector v, i.e. the
projection of v onto X ; see Figure 3.1.

X = B1(R)
v

0 R

⇧X(v)

Figure 3.1: Projecting onto an `1-ball

At first sight, this may look like a rather complicated task. Geometri-
cally, X is a cross polytope (square for d = 2, octahedron for d = 3), and as
such it has 2d many facets. But we can start with some basic simplifying
observations.

Fact 3.7. We may assume w.l.o.g. that (i) R = 1, (ii) vi � 0 for all i, and (iii)Pd
i=1 vi > 1.

Proof. If we project v/R onto B1(1), we obtain ⇧X(v)/R (just scale Fig-
ure 3.1), so we can restrict to the case R = 1. For (ii), we observe that
simultaneously flipping the signs of a fixed subset of coordinates in both
v and x 2 X yields vectors v

0 and x
0
2 X such that kx � vk = kx

0
� v

0
k;

thus, x minimizes the distance to v if and only if x0 minimizes the distance
to v

0. Hence, it suffices to compute ⇧X(v) for vectors with nonnegative
entries. If

Pd
i=1 vi 1, we have ⇧X(v) = v and are done, so the interesting

case is (iii).

45

Fact 3.8. Under the assumptions of Fact 3.7, x = ⇧X(v) satisfies xi � 0 for all i
and

Pd
i=1 xi = 1.

Proof. If xi < 0 for some i, then (�xi � vi)2 (xi � vi)2 (since vi � 0), so
flipping the i-th sign in x would yield another vector in X at least as close
to v as x, but such a vector can’t exist by strict convexity of the squared
distance. And if

Pd
i=1 xi < 1, then x

0 = x + �(v � x) 2 X for some small
positive �, with kx

0
�vk = (1��)kx�vk, again contradicting the optimality

of x.

Corollary 3.9. Under the assumptions of Fact 3.7,

⇧X(v) = argmin
x2�d

kx� vk
2,

where

�d :=
n
x 2 Rd :

dX

i=1

xi = 1, xi � 0 8i
o

is the standard simplex.

This means, we have reduced the projection onto an `1-ball to the pro-
jection onto the standard simplex; see Figure 3.2.

�d
v

0 1

⇧X(v)

Figure 3.2: Projecting onto the standard simplex

To address the latter task, we make another assumption that can be
established by suitably permuting the entries of v (which just permutes
the entries of its projection onto �d in the same way).

46

Fact 3.10. We may w.l.o.g. assume that v1 � v2 � · · · � vd.

Lemma 3.11. Let x? := argminx2�d
kx�vk

2. Under the assumption of Fact 3.10,
there exists (a unique) p 2 {1, . . . , d} such that

x?
i > 0, i p,

x?
i = 0, i > p.

Proof. We are using the optimality criterion of Lemma 1.17:

rdv(x
?)>(x� x

?) = 2(x?
� v)>(x� x

?) � 0, x 2 �d. (3.9)

By
Pd

i=1 x
?
i = 1, there is at least one positive entry in x

?. It remains to
show that we can’t have x?

i = 0 and x?
i+1 > 0. Indeed, in this situation, we

could decrease x?
i+1 by some small positive " and simultaneously increase

x?
i to " to obtain a vector x 2 �d such that

(x?
� v)>(x� x

?) = (0� vi)"� (x?
i+1 � vi+1)" = "(vi+1 � vi| {z }

0

� x?
i+1|{z}
>0

) < 0,

contradicting the optimality (3.9).

But we can say even more about x?.

Lemma 3.12. Under the assumption of Fact 3.10, and with p as in Lemma 3.11,

x?
i = vi �⇥p, i p,

where

⇥p =
1

p

⇣ pX

i=1

vi � 1
⌘
.

Proof. Suppose x?
i �vi < x?

j �vj for some i, j p. As before, we could then
decrease x?

j > 0 by some small positive " and simultaneously increase x?
i

by " to obtain x 2 �d such that

(x?
� v)>(x� x

?) = (x?
i � vi)"� (x?

j � vj)" = "((x?
i � vi)� (x?

j � vj)| {z }
<0

) < 0,

again contradicting (3.9). The expression for ⇥p is then obtained from

1 =
pX

i=1

x?
i =

pX

i=1

(vi �⇥p) =
pX

i=1

vi � p⇥p.

47

Let us summarize the situation: we now have d candidates for x
?,

namely the vectors

x
?(p) := (v1 �⇥p, . . . , vp �⇥p, 0, . . . , 0), p 2 {1, . . . , d}, (3.10)

and we just need to find the right one. In order for candidate x
?(p) to

comply with Lemma 3.11, we must have

vp �⇥p > 0, (3.11)

and this actually ensures x
?(p)i > 0 for all i p by the assumption of

Fact 3.10 and therefore x
?(p) 2 �d. But there could still be several values

of p satisfying (3.11). Among them, we simply pick the one for which x
?(p)

minimizes the distance to v. It is not hard to see that this can be done in
time O(d log d), by first sorting v and then carefully updating the values
⇥p and kx

?(p)� vk
2 as we vary p to check all candidates.

But actually, there is an even simpler criterion that saves us from com-
paring distances.

Lemma 3.13. Under the assumption of Fact 3.10, with x
?(p) as in (3.10), and

with

p? := max
�
p 2 {1, . . . , d} : vp �

1

p

⇣ pX

i=1

vi � 1
⌘
> 0

,

it holds that
argmin
x2�d

kx� vk
2 = x

?(p?).

The proof is Exercise 21. Together with our previous reductions, we
obtain the following result.

Theorem 3.14. Let v 2 Rd, R 2 R+, X = B1(R) the `1-ball around 0 of
radius R. The projection

⇧X(v) = argmin
x2X

kx� vk
2

of v onto B1(R) can be computed in time O(d log d).

This can be improved to time O(d), based on the observation that a
given p can be compared to the value p? in Lemma 3.13 in linear time,
without the need to presort v [DSSSC08].

48

3.6 Proximal gradient descent
Many optimization problems in applications come with additional struc-
ture. An important class of objective functions is composed as

f(x) := g(x) + h(x) (3.12)

where g is a “nice” function, where as h is a “simple” additional term,
which however doesn’t satisfy the assumptions of niceness which we used
in the convergence analysis so far. In particular, an important case is
when h is not differentiable.

The classical gradient step for unconstrained minimization of a func-
tion g can be equivalently written as

xt+1 =argmin
y2Rd

g(xt) +rg(xt)
>(y � xt) +

1

2�
ky � xtk

2 (3.13)

=argmin
y2Rd

1

2�
ky � (xt � �rg(xt))k

2 . (3.14)

To obtain the last equality, we have just completed the quadratic kvk
2 +

2v>
w + kwk

2 = kv + wk
2 for v := �rg(xt) and w := y � xt. Here it is

crucial that v is independent of the optimization variable y, so therefore
the term can be ignored when taking the argmin. The scaling by 1

2� is also
irrelevant but we keep it for better illustrating the next step.

The interpretation of the above equivalent reformulation of the classic
gradient step is important for us, and is what has enabled the previous
convergence analysis in Section 2.4 for smooth unconstrained optimiza-
tion: For the particular choice of stepsize � := 1

L which we have used,
the above formulation shows that the gradient descent step exactly min-
imizes the local quadratic model of g at our current iterate xt, formed by
the smoothness property with parameter L as defined in (2.7).

Our goal in this section is to minimize f = g + h, instead of only the
smooth part g alone. The idea of the proximal gradient method is to mod-
ify the simple quadratic model (3.13) above, so as to make it a valid model
for f , that is a model which upper bounds f at all points. The simplest way
to do this is to just treat the h function separately by adding it unmodified.

49

We obtain the update equation for proximal gradient descent

xt+1 := argmin
y2Rd

g(xt) +rg(xt)
>(y � xt) +

1

2�
ky � xtk

2 + h(y) (3.15)

=argmin
y

1

2�
ky � (xt � �rg(xt))k

2 + h(y) . (3.16)

The last formulation makes clear that the resulting update tries to com-
bine the two goals, staying close to the classic gradient update, as well as
also to minimize h.

3.6.1 The proximal gradient algorithm
We define the proximal mapping for a given function h, and parameter � >
0:

proxh,�(z) := argmin
y

n 1

2�
ky � zk

2 + h(y)
o

An iteration of proximal gradient descent is defined as

xt+1 := proxh,�(xt � �rg(xt)) . (3.17)

This same update step can also be written in different form as

xt+1 = xt � �G�(xt) (3.18)

for Gh,�(x) :=
1
�

⇣
x� proxh,�(x� �rg(x))

⌘
being the so called generalized

gradient of f .

A generalization of gradient descent. The proximal gradient descent
method (3.17) is also known as generalized gradient descent. In the special
case h ⌘ 0, we of course recover classic gradient descent.

More interestingly, it is also a generalization of projected gradient de-
scent as we have discussed in the previous sections. Given a closed convex
set X , the indicator function of the set X is given as the convex function

◆X : Rd
! R [+1

x 7! ◆X(x) :=

(
0 if x 2 X,

+1 otherwise.
(3.19)

50

When using the indicator function of our constraint set X as h ⌘ ◆X , it is
easy to see that the proximal mapping simply becomes

proxh,�(z) := argmin
y

n 1

2�
ky � zk

2 + ◆X(y)
o

=argmin
y2X

ky � zk
2 = ⇧X(z) ,

which is the projection of z onto X .
As we will see, the convergence of proximal gradient will be as fast as

classic gradient descent. However, this still comes not entirely for free. In
every iteration, we now have to additionally compute the proximal map-
ping. This can be very expensive if h is complex. Nevertheless, for some
important examples of h the proximal mapping is efficient to compute,
such as for the `1-norm.

3.6.2 Convergence in O(1/") steps
Interestingly, the vanilla convergence analysis for smooth functions as in
Theorem 2.6 directly applies for the more general case of proximal gradi-
ent descent. Intuitively, this means that proximal method only “sees” the
nice smooth part g of the objective, and is not impacted by the additional h
which it treats separately in each step.

Theorem 3.15. Let g : Rd
! R be convex and smooth with parameter L, and

also h convex and proxh,�(x) := argminz{kx � zk
2/(2�) + h(z)} can be com-

puted. Choosing the fixed stepsize

� :=
1

L
,

proximal gradient descent (3.17) with arbitrary x0 satisfies

f(xT)� f(x?)
L

2T
kx0 � x

?
k
2, T > 0.

Proof. The proof follows the vanilla analysis for the smooth case, applying
it only to g, while always keeping h separate, as in (3.15). We leave the
details as Exercise 22 for the reader.

51

3.7 Exercises
Exercise 19. Prove that in Theorem 3.4 (i),

f(xt+1) f(xt).

Exercise 20. Prove that under the assumptions of Theorem 3.6, f has a unique
minimizer x? over any closed and convex set X ✓ Rd!

Exercise 21. Prove Lemma 3.13!
Hint: It can be useful to prove that with x

?(p) as in (3.10),

x
?(p) = argmin{kx� vk :

dX

i=1

xi = 1, xp+1 = · · · = xd = 0}.

Exercise 22. Prove Theorem 3.15!

52

Bibliography

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, New York, NY, USA, 2004.
https://web.stanford.edu/˜boyd/cvxbook/.

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar
Chandra. Efficient projections onto the 1-ball for learning in
high dimensions. pages 272–279, 07 2008.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the
LASSO. J. R. Statist. Soc. B, 58(1):267–288, 1996.

[Zim16] Judith Zimmermann. Information Processing for Effective and
Stable Admission. PhD thesis, ETH Zurich, 2016. .

73

https://web.stanford.edu/~boyd/cvxbook/

