
Chapter 6

Newton’s Method
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6.1 1-dimensional case
The Newton method (or Newton-Raphson method, invented by Sir Isaac
Newton and formalized by Joseph Raphson) is an iterative method for
finding a zero of a differentiable univariate function f : R ! R. Starting
from some number x0, it computes

xt+1 := xt �
f(xt)

f 0(xt)
, t � 0. (6.1)

Figure 6.1 shows what happens. xt+1 is the point where the tangent line
to the graph of f at (xt, f(xt) intersects the x-axis. In formulas, xt+1 is the
solution of the linear equation

f(xt) + f 0(xt)(x� xt) = 0,

and this yields the update formula (6.1).

xt xt+1

f(x)

f(xt) + f 0(xt)(x� xt)

Figure 6.1: One step of Newton’s method

The Newton step (6.1) obviously fails if f 0(xt) = 0 and may get out of
control if |f 0(xt)| is very small. Any theoretical analysis will have to make
suitable assumptions to avoid this. But before going into this, we look at
Newton’s method in a benign case.
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Let f(x) = x2
� R, where R 2 R+. f has two zeros,

p
R and �

p
R.

Starting for example at x0 = R, we hope to converge to
p
R quickly. In this

case, (6.1) becomes

xt+1 = xt �
x2
t �R

2xt
=

1

2

✓
xt +

R

xt

◆
. (6.2)

This is in fact the Babylonian method to compute square roots, and here we
see that it is just a special case of Newton’s method.

Can we prove that we indeed quickly converge to
p
R? What we im-

mediately see from (6.2) is that all iterates will be positive and hence

xt+1 =
1

2

✓
xt +

R

xt

◆
�

xt

2
.

So we cannot be too fast. In order to even get xt < 2
p
R, we need at least

T � log(R)/2 steps. It turns out that the Babylonian method starts taking
off only when xt �

p
R < 1/2, say (Exercise 26 asks you to prove that it

takes O(logR) steps to get there).
To watch takeoff, let us now suppose that x0 �

p
R < 1/2, so we are

starting close to
p
R already. We rewrite (6.2) as

xt+1 �

p

R =
xt

2
+

R

2xt
�

p

R =
1

2xt

⇣
xt �

p

R
⌘2

. (6.3)

Assuming for now that R � 1/4, all iterates have value at least
p
R �

1/2, hence we get

xt+1 �

p

R 

⇣
xt �

p

R
⌘2

.

This means that the error goes to 0 quadratically, and

xT �

p

R 

⇣
x0 �

p

R
⌘2T

<

✓
1

2

◆2T

, T � 0. (6.4)

What does this tell us? In order to get xT �
p
R < ", we only need

T = log log(1") steps! Hence, it takes a while to get to roughly
p
R, but

from there, we achieve high accuracy very fast.
Let us do a concrete example (with IEEE 754 double arithmetic). If

R = 1000, we need 7 steps to get x7 �
p
1000 < 1/2, and then just 3 more

steps to get x10 equal to
p
1000 up to the machine precision (53 binary

digits). In this last phase, we essentially double the number of correct
digits in each iteration!
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6.2 Newton’s method for convex optimization
Suppose we want to find a global minimum x? of a differentiable con-
vex function f : R ! R (assuming that a global minimum exists). Lem-
mata 1.12 and Lemma 1.13 guarantee that we can equivalently search for
a zero of the derivative f 0. To do this, we can apply Newton’s method if f
is twice differentiable; the update step then becomes

xt+1 := xt �
f 0(xt)

f 00(xt)
= xt � f 00(xt)

�1f 0(xt), t � 0. (6.5)

There is no reason to restrict to d = 1. Here is Newton’s method for min-
imizing a convex function f : Rd

! R. We choose x0 arbitrarily and then
iterate:

xt+1 := xt �r
2f(xt)

�1
rf(xt), t � 0. (6.6)

The update vector r
2f(xt)�1

rf(xt) is the result of a matrix-vector mul-
tiplication: we invert the Hessian at xt and multiply the result with the
gradient at xt. As before, this fails if the Hessian is not invertible, and may
get out of control if the Hessian has small norm.

We have introduced iteration (6.6) simply as a (more or less natural)
generalization of (6.5), but there’s more to it. If we consider (6.6) as a
special case of a general update scheme

xt+1 = xt �H(xt)rf(xt),

where H(x) 2 Rd⇥d is some matrix, then we see that also gradient de-
scent (2.1) is of this form, with H(xt) = �I . Hence, Newton’s method can
also be thought of as “adaptive gradient descent” where the adaptation is
w.r.t. the local geometry of the function at xt. Indeed, as we show next,
this allows Newton’s method to converge on all nondegenerate quadratic
functions in one step, while gradient descent only does so with the right
stepsize on “beautiful” quadratic functions whose sublevel sets are Eu-
clidean balls (Exercise 18).

Lemma 6.1. A nondegenerate quadratic function is a function of the form

f(x) =
1

2
x
>Mx� q

>
x+ c,

where M 2 Rd⇥d is an invertible symmetric matrix, q 2 Rd, c 2 R. Let x? =
M�1

q be the unique solution of rf(x) = 0 (the unique local minimum if f is
convex). With any starting point x0 2 R

d, Newton’s method (6.6) yields x1 = x
?.
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Proof. We have rf(x) = Mx � q (this implies x
? = M�1

q) and r
2f(x) =

M . Hence,

x0 �r
2f(x0)

�1
rf(x0) = x0 �M�1(Mx0 � q) = M�1

q = x
?.

In particular, Newton’s method can solve an invertible system Mx = q

of linear equations in one step. But no miracle is happening here, as this
step involves the inversion of the matrix r

2f(x0) = M .
More generally, the behavior of Newton’s method is affine invariant.

By this, we mean that it is invariant under any invertible affine transfor-
mation, as follows:

Lemma 6.2 (Exercise 27). Let f : Rd
! R be twice differentiable, A 2 Rd⇥d

an invertible matrix, b 2 Rd. Let g : Rd
! R be the (bijective) affine function

g(y) = Ay + b,y 2 Rd. Finally, let Nh : Rd
! Rd denote the Newton step for

function h, i.e.
Nh(x) := x�r

2h(x)�1
rh(x),

whenever this is defined. Then we have Nf�g = g�1
�Nf � g.

This says that in order to perform a Newton step for f � g on yt, we
can transform yt to xt = g(yt), perform the Newton step for f on x and
transform the result xt+1 back to yt+1 = g�1(xt+1). Another way of saying
this is that the following diagram commutes:

yt yt+1

xt xt+1

Nf�g

Nf

g g�1

Hence, while gradient descent suffers if the coordinates are at very dif-
ferent scales, Newton’s method doesn’t.

We conclude the general exposition with another interpretation of New-
ton’s method: each step minimizes the local second-order Taylor approxi-
mation.
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Lemma 6.3 (Exercise 30). Let f be convex and twice differentiable at xt 2

dom(f), with r
2f(xt) � 0 being invertible. The vector xt+1 resulting from

the Netwon step (6.6) satisfies

xt+1 = argmin
x2Rd

f(xt) +rf(xt)
>(x� xt) +

1

2
(x� xt)

>
r

2f(xt)(x� xt).

6.3 Once you’re close, you’re there. . .
We will prove a result about Newton’s method that may seem rather weak:
under suitable conditions, and starting close to the global minimum, we
will reach distance at most " to the minimum within log log(1/") steps.
The weak part here is of course not the number of steps log log(1/")—this
is much faster than anything we have seen so far—but the assumption that
we are starting close to the minimum already. Under such an assumption,
we say that we have a local convergence result.

Global convergence results that hold for every starting point are unknown
for Newton’s method as in (6.6). There are some variants of the method
for which such results can be proved, most notably the cubic regulariza-
tion variant of Nesterov and Polyak [NP06]. Weak global convergence
results can be obtained by adding a step size to (6.6) and always making
only steps that decrease the function value (which may not happen under
the full Newton step).

An alternative is to use gradient descent to get us sufficiently close to
the global minimum, and then switch to Newton’s method for the rest. In
Chapter 2, we have seen that under favorable conditions, we may know
when gradient descent has taken us close enough.

In practice, Newton’s method is often (but not always) much faster
than gradient descent in terms of the number of iterations. The price to pay
is a higher iteration cost, since we need to compute (and invert) Hessians.

After this disclaimer, let us state the main result right away. We follow
Vishnoi [Vis14]

Theorem 6.4. Let f : dom(f) ! R be convex with a unique global mini-
mum x

?. Suppose that there is an open ball X ✓ dom(f) with center x
? such

that the following two properties hold.
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(i) Bounded inverse Hessians: There exists a real number µ > 0 such that

kr
2f(x)�1

k 
1

µ
, 8x 2 X.

(ii) Lipschitz continuous Hessians: There exists a real number L > 0 such
that

kr
2f(x)�r

2f(y)k  Lkx� yk 8x,y 2 X.

In both cases, the matrix norm is the spectral norm defined in Lemma 2.4. Prop-
erty (i) in particular stipulates that Hessians are invertible at all points in X .

Then, for xt 2 X and xt+1 resulting from the Newton step (6.6), we have

kxt+1 � x
?
k 

L

2µ
kxt � x

?
k
2.

Before we prove this, here is the local convergence result that follows.

Corollary 6.5 (Exercise 28). With the assumptions and terminology of Theo-
rem 6.4, and if

kx0 � x
?
k <

µ

L
,

then Newton’s method (6.6) yields

kxT � x
?
k <

2µ

L

✓
1

2

◆2T

, T � 0.

Hence, we have a bound as (6.4) for the last phase of the Babylonian
method: in order to get kxT � x

?
k < ", we only need T = log log(1") steps.

But before this fast behavior kicks in, we need to be µ/L-close to x
? already.

Towards the proof of Theorem 6.4, we need one more small tool.

Lemma 6.6 (Exercise 29). Let f be twice differentiable over a convex domain
dom(f), x,y 2 dom(f). Then

Z 1

0

r
2f(x+ t(y � x))(y � x)dt = rf(y)�rf(x). (6.7)
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Proof of Theorem 6.4. To simplify notation, let us abbreviate H := r
2f , x =

xt,x0 = xt+1. Subtracting x
? from both sides of (6.6), we get

x
0
� x

? = x� x
?
�H(x)�1

rf(x)

= x� x
? +H(x)�1(rf(x?)�rf(x))

= x� x
? +H(x)�1

Z 1

0

H(x+ t(x?
� x))(x?

� x)dt,

using Lemma 6.6. With

x� x
? = H(x)�1H(x)(x� x

?) = H(x)�1

Z 1

0

�H(x?
� x)dt,

we further get

x
0
� x

? = H(x)�1

Z 1

0

(H(x+ t(x?
� x))�H(x)) (x?

� x)dt.

Taking norms, we have

kx
0
� x

?
k  kH(x)�1

k ·

����
Z 1

0

(H(x+ t(x?
� x))�H(x)) (x?

� x)dt

���� ,

where we have used that kAyk  kAk · kyk for any matrix A 2 Rd⇥d and
any vector y 2 Rd which follows directly from the definition of the spectral
norm. As we also have

����
Z 1

0

g(t)dt

���� 

Z 1

0

kg(t)kdt

for any vector-valued function g (Exercise 32), we can further bound

kx
0
� x

?
k  kH(x)�1

k

Z 1

0

k(H(x+ t(x?
� x))�H(x))(x?

� x)kdt

 kH(x)�1
k

Z 1

0

k(H(x+ t(x?
� x))�H(x))k · k(x?

� x)kdt

 kH(x)�1
k · k(x?

� x)k

Z 1

0

kH(x+ t(x?
� x))�H(x)k.
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We can now use the properties (i) and (ii) (bounded inverse Hessians, Lip-
schitz continuous Hessians) to conclude that

kx
0
� x

?
k 

1

µ
k(x?

� x)k

Z 1

0

Lkt(x?
� x)kdt =

L

µ
k(x?

� x)k2
Z 1

0

tdt
| {z }

1/2

.

How realistic are properties (i) and (ii)? If f is twice continuously dif-
ferentiable (meaning that the second derivative r

2f is continuous), then
we will always find suitable values of µ and L over an open ball X with
center x?—provided that r2f(x?) 6= 0.

Indeed, already in the one-dimensional case, we see that under f 00(x?) =
0 (vanishing second derivative at the global minimum), Newton’s method
will in the worst reduce the distance to x? at most by a constant factor in
each step, no matter how close to x? we start. Exercise 31 asks you to find
such an example. In such a case, we have linear convergence, but the fast
quadratic convergence (O(log log(1/")) steps cannot be proven.

One way to ensure bounded inverse Hessians is to require strong con-
vexity over X .

Lemma 6.7 (Exercise 33). Let f : dom(f) ! R be twice differentiable and
strongly convex with parameter µ over an open convex subset X ✓ dom(f)
according to Definition 3.5, meaning that

f(y) � f(x) +rf(x)>(y � x) +
µ

2
kx� yk

2, 8x,y 2 X.

Then r
2f(x) is invertible and kr

2f(x)�1
k  1/µ for all x 2 X , where k · k is

the spectral norm defined in Lemma 2.4.

6.4 Exercises
Exercise 26. Consider the Babylonian method (6.2). Prove that we get xT �
p
R < 1/2 for T = O(logR).

Exercise 27. Prove Lemma 6.2!

Exercise 28. Prove Corollary 6.5!
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Exercise 29. Prove Lemma 6.6! Hint: You may use
Z b

a

g0(t)dt = g(b)� g(a),

where g0 is the derivative of the univariate function g.

Exercise 30. Prove Lemma 6.3!

Exercise 31. Let � > 0 be any real number. Find an example of a convex function
f : R ! R such that (i) the unique global minimum x? has a vanishing second
derivative f 00(x?) = 0, and (ii) Newton’s method satisfies

|xt+1 � x?
| � (1� �)|xt � x?

|,

for all xt 6= x?.

Exercise 32. This exercise is just meant to recall some basics around integrals.
Show that for a vector-valued function g : R! Rd, the inequality

����
Z 1

0

g(t)dt

���� 

Z 1

0

kg(t)kdt

holds, where k · k is the 2-norm (always assuming that the funtions under consid-
eration are integrable)! You may assume (i) that integrals are linear:

Z 1

0

(�1g1(t) + �2g2(t))dt = �1

Z 1

0

g1(t)dt+ �2

Z 1

0

g2(t)dt,

And (ii), if g(t) � 0 for all t 2 [0, 1], then
R 1

0 g(t)dt � 0.

Exercise 33. Prove Lemma 6.7! You may want to proceed in the following steps.

(i) Prove that the function g(x) = f(x)� µ
2kxk

2 is convex over X .

(ii) Prove that r2f(x) is invertible for all x 2 X .

(iii) Prove that all eigenvalues of r2f(x)�1 are positive and at most 1/µ.

(iv) Prove that for a symmetric matrix M , the spectral norm kMk is the largest
absolute eigenvalue.
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