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Stochastic Subgradient Descent

For problems which are not necessarily differentiable, we modify
SGD to use a subgradient of fi in each iteration. The update of
stochastic subgradient descent is given by

sample i ∈ [n] uniformly at random

let gt ∈ ∂fi(xt)
xt+1 := xt − γtgt.

In other words, we are using an unbiased estimate of a subgradient
at each step, E

[
gt
∣∣xt] ∈ ∂f(xt).

Convergence in O(1/ε2), by using the subgradient property at the
beginning of the proof, where convexity was applied.
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Constrained optimization

For constrained optimization, our theorem for the SGD
convergence in O(1/ε2) steps directly extends to constrained
problems as well.

After every step of SGD, projection back to X is applied as usual.
The resulting algorithm is called projected SGD.
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Strong convexity: O(1/ε) steps

Strengthen the above SGD analysis? Additional assumption of
strong convexity of the objective f . No constant stepsize γ, but
instead use time-varying stepsize γt decreasing over the time t.

Theorem

Let f : Rd → R be differentiable and strongly convex with
parameter µ > 0; let x? be the unique global minimum of f , and
E
[
‖gt‖2

]
≤ B2 for all x. Choosing the decreasing stepsize

γt :=
2

µ(t+ 1)
SGD yields

E
[
f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?)

]
≤ 2B2

µ(T + 1)
.
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Strong convexity: O(1/ε) steps

Proof. Step def., and 2v>w = ‖v‖2 + ‖w‖2 − ‖v −w‖2 gives

‖xt+1 − x?‖2 = ‖xt − γtgt − x?‖2

= ‖xt − x?‖2 + γ2t ‖gt‖
2 − 2γtg

>
t (xt − x?)

Taking conditional expectation on both sides, and using
unbiasedness of the stochastic gradient gt, we get

E
[
‖xt+1 − x?‖2

∣∣xt]
= ‖xt − x?‖2 + γ2tE

[
‖gt‖2

∣∣xt]− 2γt∇f(xt)>(xt − x?)

Strong convexity with y = x?,x = xt yields

∇f(xt)>(xt − x?) ≥ f(xt)− f(x?) +
µ

2
‖xt − x?‖2 ,
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Strong convexity: O(1/ε) steps

combining the above two, we have

E
[
‖xt+1 − x?‖2

∣∣xt]
≤ ‖xt−x?‖2 + γ2tE

[
‖gt‖2

∣∣xt]− 2γt

(
f(xt)−f(x?) +

µ

2
‖xt−x?‖2

)
Rearranging and again taking expectation over the randomness of
now the entire sequence of steps 0, 1, . . . , t, as well as using
E
[
‖gt‖2

]
≤ B2, we have

2γtE[f(xt)−f(x?)]
≤ γ2tB2 + (1− µγt)E

[
‖xt−x?‖2

]
− E

[
‖xt+1−x?‖2

]
E[f(xt)− f(x?)]

≤ B2γt
2

+
(γ−1t − µ)

2
E
[
‖xt−x?‖2

]
− γ−1t

2
E
[
‖xt+1−x?‖2

]
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Strong convexity: O(1/ε) steps

Now using the stepsize γt :=
2

µ(t+1) , and multiplying the above
inequality by t on both the sides,

tE
[
f(xt)−f(x?)

]
≤ B2t

µ(t+ 1)
+
µ

4

(
t(t− 1)E

[
‖xt−x?‖2

]
− t(t+ 1)E

[
‖xt+1−x?‖2

])
≤ B2

µ
+
µ

4

(
t(t− 1)E

[
‖xt − x?‖2

]
− t(t+ 1)E

[
‖xt+1 − x?‖2

])
Summing from t = 1, . . . , T and telescoping,

T∑
t=1

t · E
[
f(xt)− f(x?)

]
≤TB

2

µ
+
µ

4

(
0− T (T + 1)E

[
‖xT − x?‖2

])
≤TB

2

µ
.
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Strong convexity: O(1/ε) steps

Finally, using Jensen’s inequality (since 2
T (T+1)

∑T
t=1 t = 1):

f

(
2

T (T + 1)

T∑
t=1

t ·xt
)
− f(x?) ≤ 2

T (T + 1)

T∑
t=1

t
(
f(xt)− f(x?)

)
.

therefore

E
[
f

(
2

T (T + 1)

T∑
t=1

t · xt
)
− f(x?)

]
≤ 2B2

µ(T + 1)
.
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Mini-batch SGD

Instead of using a single element fi, use an average of several of
them:

g̃t :=
1

m

m∑
j=1

gjt .

Extreme cases:
m = 1 ⇔ SGD as originally defined
m = n ⇔ full gradient descent

Benefit: Gradient computation can be naively parallelized
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Mini-batch SGD

Variance Intuition: Taking an average of many independent
random variables reduces the variance. So for larger size of the
mini-batch m, g̃t will be closer to the true gradient, in expectation:

E
[∥∥∥g̃t −∇f(xt)∥∥∥2] =E[∥∥∥ 1

m

m∑
j=1

gjt −∇f(xt)
∥∥∥2]

=
1

m
E
[
‖g1

t −∇f(xt)‖2
]

=
1

m
E
[
‖g1

t ‖2
]
− 1

m
‖∇f(xt)‖2 ≤

B2

m
.

Using a modification of the SGD analysis, can use this quantity to
relate convergence rate to the rate of full gradient descent.
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Chapter 6

Newton’s method
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1-dimensional case: Newton-Raphson method
Goal: finding a zero of differentiable f : R→ R.
Method:

xt+1 := xt −
f(xt)

f ′(xt)
, t ≥ 0.

xt xt+1

f(x)

f(xt) + f ′(xt)(x− xt)
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Example: Finding the square root

Set f(x) := x2 −R, run Newton-Raphson:

xt+1 := xt −
x2t −R
2xt

=
1

2

(
xt +

R

xt

)
.

Assume we’re already close: xt −
√
R < 1/2 (See Exercise 26).

Then the error goes to 0 quadratically (technical: assume
√
R ≥ 1/2),

xT −
√
R ≤

(
x0 −

√
R
)2T

<

(
1

2

)2T

I Only O
(
log log(1/ε)

)
steps needed!
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Newton’s method for optimization

1-dimensional case: Find a global minimum x? of a differentiable
convex function f : R→ R.

Can equivalently search for a zero of the derivative f ′: Apply the
Newton-Raphson method to f ′. Update step:

xt+1 := xt −
f ′(xt)

f ′′(xt)
= xt − f ′′(xt)−1f ′(xt)

(needs f twice differentiable)

d-dimensional case: Newton’s method for minimizing a convex
function f : Rd → R:

xt+1 := xt −∇2f(xt)
−1∇f(xt)
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Convergence in one step on quadratics

Lemma
On (nondegenerate) quadratics, with any starting point x0 ∈ Rd,
Newton’s method yields x1 = x?.

A nondegenerate quadratic function is a function of the form

f(x) =
1

2
x>Mx− q>x+ c,

where M ∈ Rd×d is an invertible symmetric matrix, q ∈ Rd, c ∈ R.
Here let x? =M−1q be the unique solution of ∇f(x) = 0.

Proof.
We have ∇f(x) =Mx− q (this implies x? =M−1q) and
∇2f(x) =M . Hence,

x0 −∇2f(x0)
−1∇f(x0) = x0 −M−1(Mx0 − q) =M−1q = x?.
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