Optimization for Machine Learning CS-439

Lecture 7: Newton and Quasi-Newton

Martin Jaggi

EPFL – github.com/epfml/OptML_course

April 20, 2018

Affine Invariance

Newton's method is affine invariant (invariant under any invertible affine transformation):

Lemma (Exercise 27)

Let $f:\mathbb{R}^d\rightarrow\mathbb{R}$ be twice differentiable, $A\in\mathbb{R}^{d\times d}$ an invertible matrix, $\mathbf{b} \in \mathbb{R}^d$. Let $g: \mathbb{R}^d \to \mathbb{R}$ be the (bijective) affine function $g(\mathbf{y}) = A\mathbf{y} + \mathbf{b}, \mathbf{y} \in \mathbb{R}^d$. Finally, let $N_h: \mathbb{R}^d \to \mathbb{R}^d$ denote the Newton step for function h , i.e.

$$
N_h(\mathbf{x}) := \mathbf{x} - \nabla^2 h(\mathbf{x})^{-1} \nabla h(\mathbf{x}),
$$

whenever this is defined. Then we have $N_{f \circ g} = g^{-1} \circ N_f \circ g$.

Affine Invariance

Newton step for $f\circ g$ on \mathbf{y}_t : can transform \mathbf{y}_t to $\mathbf{x}_t = g(\mathbf{y}_t)$, perform the Newton step for f on x and transform the result x_{t+1} back to $\mathbf{y}_{t+1} = g^{-1}(\mathbf{x}_{t+1})$. I.e., the following diagram commutes:

Hence, while gradient descent suffers if the coordinates are at very different scales, Newton's method doesn't.

EPFL Machine Learning and Optimization Laboratory 3/18

Affine Invariance

Invariance to scaling of the input problem

Minimizing the second-order Taylor approximation

Alternative interpretation of Newton's method: Each step minimizes the local second-order Taylor approximation.

Lemma (Exercise 30)

Let f be convex and twice differentiable at ${\bf x}_t \in {\bf dom}(f)$, with $\nabla^2 f(\mathbf{x}_t) \succ 0$ being invertible. The vector \mathbf{x}_{t+1} resulting from the Netwon step satisfies

$$
\mathbf{x}_{t+1} = \underset{\mathbf{x} \in \mathbb{R}^d}{\text{argmin}} \ f(\mathbf{x}_t) + \nabla f(\mathbf{x}_t)^\top (\mathbf{x} - \mathbf{x}_t) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_t)^\top \nabla^2 f(\mathbf{x}_t) (\mathbf{x} - \mathbf{x}_t).
$$

Once you're close, you're there. . .

Theorem

Let $f : \textbf{dom}(f) \to \mathbb{R}$ be convex with a unique global minimum x^* . Suppose there is an open ball $X \subseteq \textbf{dom}(f)$ with center \mathbf{x}^* , s.t.

- (i) Bounded inverse Hessians: There exists a real number $\mu > 0$ such that $\|\nabla^2 f(\mathbf{x})^{-1}\| \leq \frac{1}{\mu}, \quad \forall \mathbf{x} \in X.$
- (ii) Lipschitz continuous Hessians: There exists a real number $L > 0$ such that

$$
\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y} \in X.
$$

Matrix norm is spectral norm. Note: (i) \Rightarrow Hessian invertible at all $\mathbf{x} \in X$.

Then, for $x_t \in X$ and x_{t+1} resulting from the Newton step, we have

$$
\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\| \leq \frac{L}{2\mu} \|\mathbf{x}_t - \mathbf{x}^{\star}\|^2.
$$

Super-exponentially fast?

Starting close to the global minimum, we will reach distance at most ε to the minimum within $\mathcal{O}\big(\log\log(1/\varepsilon)\big)$ steps.

Corollary (Exercise 28)

With the assumptions and terminology of the above theorem, and if

$$
\|\mathbf{x}_0-\mathbf{x}^{\star}\|<\frac{\mu}{L},
$$

then Newton's method yields

$$
\|\mathbf{x}_T - \mathbf{x}^{\star}\| < \frac{2\mu}{L} \left(\frac{1}{2}\right)^{2^T}, \quad T \ge 0.
$$

Proof of convergence theorem

Lemma (Exercise 29)

Let f be twice differentiable over a convex domain $\textbf{dom}(f)$, $x, y \in \textbf{dom}(f)$. Then

$$
\int_0^1 \nabla^2 f(\mathbf{x} + t(\mathbf{y} - \mathbf{x}))(\mathbf{y} - \mathbf{x}) dt = \nabla f(\mathbf{y}) - \nabla f(\mathbf{x}).
$$

Proof of Thm. We abbreviate $H := \nabla^2 f$, $\mathbf{x} = \mathbf{x}_t, \mathbf{x}' = \mathbf{x}_{t+1}$. Subtracting x^* from both sides of the step definition:

$$
\mathbf{x}' - \mathbf{x}^* = \mathbf{x} - \mathbf{x}^* - H(\mathbf{x})^{-1} \nabla f(\mathbf{x})
$$

= $\mathbf{x} - \mathbf{x}^* + H(\mathbf{x})^{-1} (\nabla f(\mathbf{x}^*) - \nabla f(\mathbf{x}))$
= $\mathbf{x} - \mathbf{x}^* + H(\mathbf{x})^{-1} \int_0^1 H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x}))(\mathbf{x}^* - \mathbf{x}) dt,$

using the previous Lemma.

EPFL Machine Learning and Optimization Laboratory 8/18

Proof of convergence theorem, II

With

$$
\mathbf{x} - \mathbf{x}^* = H(\mathbf{x})^{-1}H(\mathbf{x})(\mathbf{x} - \mathbf{x}^*) = H(\mathbf{x})^{-1}\int_0^1 -H(\mathbf{x})(\mathbf{x}^* - \mathbf{x})dt,
$$

we further get

$$
\mathbf{x}' - \mathbf{x}^* = H(\mathbf{x})^{-1} \int_0^1 \big(H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}) \big) (\mathbf{x}^* - \mathbf{x}) dt.
$$

Taking norms, we have

$$
\|\mathbf{x}'-\mathbf{x}^{\star}\| \leq \|H(\mathbf{x})^{-1}\| \cdot \left\| \int_0^1 \left(H(\mathbf{x} + t(\mathbf{x}^{\star} - \mathbf{x})) - H(\mathbf{x}) \right) (\mathbf{x}^{\star} - \mathbf{x}) dt \right\|,
$$

because $||Ay|| \le ||A|| \cdot ||y||$ for any A, y (by def. of spectral norm).

Proof of convergence theorem, III

Also,

$$
\left\| \int_0^1 \mathbf{g}(t) dt \right\| \leq \int_0^1 \|\mathbf{g}(t)\| dt
$$

for any vector-valued function g (Exercise 32) , so we can bound

$$
\|\mathbf{x}' - \mathbf{x}^*\| \le \|H(\mathbf{x})^{-1}\| \int_0^1 \|(H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}))(\mathbf{x}^* - \mathbf{x})\| dt
$$

\n
$$
\le \|H(\mathbf{x})^{-1}\| \int_0^1 \|(H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x}))\| \cdot \|(\mathbf{x}^* - \mathbf{x})\| dt
$$

\n
$$
\le \|H(\mathbf{x})^{-1}\| \cdot \|(\mathbf{x}^* - \mathbf{x})\| \int_0^1 \|H(\mathbf{x} + t(\mathbf{x}^* - \mathbf{x})) - H(\mathbf{x})\|.
$$

We can now use the properties (i) and (ii) (bounded inverse Hessians, Lipschitz continuous Hessians) to conclude that

$$
\|\mathbf{x}'-\mathbf{x}^{\star}\| \leq \frac{1}{\mu} \|(\mathbf{x}^{\star}-\mathbf{x})\| \int_0^1 L \|t(\mathbf{x}^{\star}-\mathbf{x})\| dt = \frac{L}{\mu} \|(\mathbf{x}^{\star}-\mathbf{x})\|^2 \underbrace{\int_0^1 t dt}_{1/2}.
$$

EPFL Machine Learning and Optimization Laboratory 10/18

Strong convexity?

One way to ensure bounded inverse Hessians is to require strong convexity over X .

Lemma (Exercise 33)

Let $f : dom(f) \to \mathbb{R}$ be twice differentiable and strongly convex with parameter μ over an open convex subset $X \subseteq \textbf{dom}(f)$ meaning that

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{x} - \mathbf{y}||^2, \quad \forall \mathbf{x}, \mathbf{y} \in X.
$$

Then $\nabla^2 f(\mathbf{x})$ is invertible and $\|\nabla^2 f(\mathbf{x})^{-1}\| \leq 1/\mu$ for all $\mathbf{x} \in X$, where $\|\cdot\|$ is the spectral norm.

Chapter 7

Quasi-Newton Methods

EPFL Machine Learning and Optimization Laboratory 12/18

Downside of Newton's method

Computational bottleneck in each step:

 \triangleright compute and invert the Hessian matrix.

Matrix has size $d\times d$, taking up to $\mathcal{O}(d^3)$ time to invert — or to solve the linear system $\nabla^2 f(\mathbf{x}_t) \Delta \mathbf{x} = -\nabla f(\mathbf{x}_t)$ for $\Delta \mathbf{x}$.

The secant method

Back to 1-dim.

Another iterative methods for finding zeros?

Newton-Raphson step

$$
x_{t+1} := x_t - \frac{f(x_t)}{f'(x_t)},
$$

Lazy: use finite difference approximation

$$
f'(x_t) \approx \frac{f(x_t) - f(x_{t-1})}{x_t - x_{t-1}}
$$
.
(for $|x_t - x_{t-1}|$ small)

Obtain the secant method:

$$
x_{t+1} := x_t - f(x_t) \frac{x_t - x_{t-1}}{f(x_t) - f(x_{t-1})}
$$

EPFL Machine Learning and Optimization Laboratory 14/18

The secant method II

Figure: One step of the secant method

The secant method III

Why? now have a derivative-free version of Newton's method.

Secant method for optimization: Can we also optimize a differentiable univariate function f ? — Yes, apply the secant method to f'

$$
x_{t+1} := x_t - f'(x_t) \frac{x_t - x_{t-1}}{f'(x_t) - f'(x_{t-1})}
$$

 \triangleright a second-derivative-free version of Newton for optimization.

Can we generalize this to higher dimensions to obtain a Hessian-free version of Newton's method on \mathbb{R}^d ?

The secant condition

Applying finite difference approximation to f'' (still 1-dim),

$$
H_t := \frac{f'(x_t) - f'(x_{t-1})}{x_t - x_{t-1}} \approx f''(x_t),
$$

$$
f'(x_t) - f'(x_{t-1}) = H_t(x_t - x_{t-1})
$$

the secant condition.

⇔

- ► Newton's method: $x_{t+1} := x_t f''(x_t)^{-1} f'(x_t)$
- ► Secant method: $x_{t+1} := x_t H_t^{-1}f'(x_t)$

In higher dimensions: Let $H_t \in \mathbb{R}^{d \times d}$ be a symmetric matrix satisfying the d -dimensional secant condition

$$
\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}) = H_t(\mathbf{x}_t - \mathbf{x}_{t-1}).
$$

The Newton step then becomes

$$
\mathbf{x}_{t+1} := \mathbf{x}_t - H_t^{-1} \nabla f(\mathbf{x}_t). \tag{QN}
$$

EPFL Machine Learning and Optimization Laboratory 17/18

Quasi-Newton methods

If f is twice differentiable, join the secant condition along with the first-order Taylor approximation of $\nabla f(\mathbf{x})$:

$$
\nabla f(\mathbf{x}_t) - \nabla f(\mathbf{x}_{t-1}) = H_t(\mathbf{x}_t - \mathbf{x}_{t-1}) \approx \nabla^2 f(\mathbf{x}_t)(\mathbf{x}_t - \mathbf{x}_{t-1}),
$$

 \Rightarrow [\(QN\)](#page-16-0) approximates Newton's method.

Quasi-Newton method: Whenever [\(QN\)](#page-16-0) is used with a symmetric matrix satisfying the secant condition.

- ► How to find good H_t^{-1} matrices? BFGS, L-BFGS, etc.
- \triangleright Newton's method is a Quasi-Newton method if and only if f is a nondegenerate quadratic function (Exercise 35). Hence, Quasi-Newton methods do not generalize Newton's method but form a family of related algorithms.