Skip to content

Latest commit

 

History

History
65 lines (53 loc) · 2.58 KB

pytorch_vision_vgg.md

File metadata and controls

65 lines (53 loc) · 2.58 KB
layout background-class body-class title summary category image author tags github-link featured_image_1 featured_image_2
pytorch_hub_detail
pytorch-hub-background
pytorch-hub
VGG
Award winning models in ILSVRC challenge 2014.
researchers
pytorch-logo.png
Pytorch Team
CV
image classification
vgg.png
no-image

Model Description

Here we have implementations for the models proposed in Very Deep Convolutional Networks for Large-Scale Image Recognition, for each configurations and their with bachnorm version.

For example, configuration A presented in the paper is vgg11, configuration B is vgg13, configuration D is vgg16 and configuration E is vgg19. Their batchnorm version are suffixed with _bn.

Their 1-crop error rates on imagenet dataset with pretrained models are list below.

Model structure Top-1 error Top-5 error
vgg11 30.98 11.37
vgg11_bn 26.70 8.58
vgg13 30.07 10.75
vgg13_bn 28.45 9.63
vgg16 28.41 9.62
vgg16_bn 26.63 8.50
vgg19 27.62 9.12
vgg19_bn 25.76 8.15

Notes on Inputs

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You can use the following transform to normalize:

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

Example:

import torch
model = torch.hub.load('pytorch/vision', 'vgg11', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg11_bn', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg13', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg13_bn', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg16', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg16_bn', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg19', pretrained=True)
model = torch.hub.load('pytorch/vision', 'vgg19_bn', pretrained=True)

Resources: