-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxor.py
44 lines (26 loc) · 982 Bytes
/
xor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from neuralNetwork import neuralNetwork
network = neuralNetwork(2, 10, 1, 0.2)
inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
outputs = [[0], [1], [1], [0]]
print("before Training:")
print("Expected result:" + str(outputs[0]))
print(network.query(inputs[0]))
print("Expected result:" + str(outputs[1]))
print(network.query(inputs[1]))
print("Expected result:" + str(outputs[2]))
print(network.query(inputs[2]))
print("Expected result:" + str(outputs[3]))
print(network.query(inputs[3]))
network.train(inputs[0], outputs[0])
for i in range(20000):
for record in range(len(inputs)):
network.train(inputs[record], outputs[record])
print("After Training:")
print("Expected result:" + str(outputs[0]))
print(network.query(inputs[0]))
print("Expected result:" + str(outputs[1]))
print(network.query(inputs[1]))
print("Expected result:" + str(outputs[2]))
print(network.query(inputs[2]))
print("Expected result:" + str(outputs[3]))
print(network.query(inputs[3]))