forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtest_rnn.cpp
139 lines (121 loc) · 4.75 KB
/
test_rnn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "layer/rnn.h"
#include "testutil.h"
static int test_rnn(const ncnn::Mat& a, int outch, int direction)
{
int input_size = a.w;
int num_directions = direction == 2 ? 2 : 1;
ncnn::ParamDict pd;
pd.set(0, outch);
pd.set(1, outch * input_size * num_directions);
pd.set(2, direction);
std::vector<ncnn::Mat> weights(3);
weights[0] = RandomMat(outch * input_size * num_directions);
weights[1] = RandomMat(outch * num_directions);
weights[2] = RandomMat(outch * outch * num_directions);
int ret = test_layer<ncnn::RNN>("RNN", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_rnn failed a.dims=%d a=(%d %d %d) outch=%d, direction = %d \n", a.dims, a.w, a.h, a.c, outch, direction);
}
return ret;
}
int test_rnn_layer_with_hidden(const ncnn::Mat& a, int outch, int direction)
{
int input_size = a.w;
ncnn::ParamDict pd;
pd.set(0, outch);
pd.set(1, outch * input_size);
pd.set(2, direction);
std::vector<ncnn::Mat> weights(3);
weights[0] = RandomMat(outch * input_size);
weights[1] = RandomMat(outch);
weights[2] = RandomMat(outch * outch);
// initial hidden state
ncnn::Mat hidden = RandomMat(outch);
std::vector<ncnn::Mat> as(2);
as[0] = a;
as[1] = hidden;
int ret = test_layer<ncnn::RNN>("RNN", pd, weights, as, 2);
if (ret != 0)
{
fprintf(stderr, "test_rnn_layer_with_hidden failed a.dims=%d a=(%d %d %d) outch=%d, direction = %d \n", a.dims, a.w, a.h, a.c, outch, direction);
}
return ret;
}
static int test_rnn_0()
{
return 0
|| test_rnn(RandomMat(4, 1), 2, 2)
|| test_rnn(RandomMat(8, 2), 2, 2)
|| test_rnn(RandomMat(16, 8), 7, 2)
|| test_rnn(RandomMat(17, 8), 8, 2)
|| test_rnn(RandomMat(19, 15), 8, 2)
|| test_rnn(RandomMat(5, 16), 16, 2)
|| test_rnn(RandomMat(3, 16), 8, 2)
|| test_rnn(RandomMat(8, 16), 16, 2)
|| test_rnn(RandomMat(2, 5), 17, 2);
}
static int test_rnn_1()
{
return 0
|| test_rnn_layer_with_hidden(RandomMat(4, 4), 1, 1)
|| test_rnn_layer_with_hidden(RandomMat(8, 2), 2, 1)
|| test_rnn_layer_with_hidden(RandomMat(16, 8), 7, 1)
|| test_rnn_layer_with_hidden(RandomMat(17, 8), 8, 1)
|| test_rnn_layer_with_hidden(RandomMat(19, 15), 8, 1)
|| test_rnn_layer_with_hidden(RandomMat(5, 16), 16, 1)
|| test_rnn_layer_with_hidden(RandomMat(3, 16), 8, 1)
|| test_rnn_layer_with_hidden(RandomMat(2, 5), 99, 1)
|| test_rnn_layer_with_hidden(RandomMat(4, 2), 1, 0)
|| test_rnn_layer_with_hidden(RandomMat(8, 2), 2, 0)
|| test_rnn_layer_with_hidden(RandomMat(16, 8), 7, 0)
|| test_rnn_layer_with_hidden(RandomMat(17, 8), 8, 0)
|| test_rnn_layer_with_hidden(RandomMat(19, 15), 8, 0)
|| test_rnn_layer_with_hidden(RandomMat(5, 16), 16, 0)
|| test_rnn_layer_with_hidden(RandomMat(3, 16), 8, 0)
|| test_rnn_layer_with_hidden(RandomMat(2, 5), 17, 0);
}
static int test_rnn_2()
{
return 0
|| test_rnn(RandomMat(4, 1), 1, 0)
|| test_rnn(RandomMat(8, 2), 2, 0)
|| test_rnn(RandomMat(16, 8), 7, 0)
|| test_rnn(RandomMat(17, 8), 8, 0)
|| test_rnn(RandomMat(19, 15), 8, 0)
|| test_rnn(RandomMat(5, 16), 16, 0)
|| test_rnn(RandomMat(3, 16), 8, 0)
|| test_rnn(RandomMat(8, 16), 16, 0)
|| test_rnn(RandomMat(2, 5), 17, 0);
}
static int test_rnn_3()
{
return 0
|| test_rnn(RandomMat(4, 1), 1, 1)
|| test_rnn(RandomMat(8, 2), 2, 1)
|| test_rnn(RandomMat(16, 8), 7, 1)
|| test_rnn(RandomMat(17, 8), 8, 1)
|| test_rnn(RandomMat(19, 15), 8, 1)
|| test_rnn(RandomMat(5, 16), 16, 1)
|| test_rnn(RandomMat(3, 16), 8, 1)
|| test_rnn(RandomMat(8, 16), 16, 1)
|| test_rnn(RandomMat(2, 5), 17, 1);
}
int main()
{
SRAND(7767517);
return test_rnn_0() || test_rnn_1() || test_rnn_2() || test_rnn_3();
}