forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmat.h
1848 lines (1602 loc) · 66 KB
/
mat.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#ifndef NCNN_MAT_H
#define NCNN_MAT_H
#include <stdlib.h>
#include <string.h>
#if __ARM_NEON
#include <arm_neon.h>
#endif
#if __SSE2__
#include <emmintrin.h>
#if __AVX__
#include <immintrin.h>
#endif
#endif
#if __mips_msa
#include <msa.h>
#endif
#if __loongarch_sx
#include <lsxintrin.h>
#endif
#if __riscv_vector
#include <riscv_vector.h>
#include "cpu.h" // cpu_riscv_vlenb()
#endif
#include "allocator.h"
#include "option.h"
#include "platform.h"
#if NCNN_PIXEL
#if NCNN_PLATFORM_API
#if __ANDROID_API__ >= 9
#include <android/bitmap.h>
#include <jni.h>
#endif // __ANDROID_API__ >= 9
#endif // NCNN_PLATFORM_API
#endif // NCNN_PIXEL
namespace ncnn {
#if NCNN_VULKAN
class VkMat;
class VkImageMat;
#endif // NCNN_VULKAN
// the three dimension matrix
class NCNN_EXPORT Mat
{
public:
// empty
Mat();
// vec
Mat(int w, size_t elemsize = 4u, Allocator* allocator = 0);
// image
Mat(int w, int h, size_t elemsize = 4u, Allocator* allocator = 0);
// dim
Mat(int w, int h, int c, size_t elemsize = 4u, Allocator* allocator = 0);
// cube
Mat(int w, int h, int d, int c, size_t elemsize = 4u, Allocator* allocator = 0);
// packed vec
Mat(int w, size_t elemsize, int elempack, Allocator* allocator = 0);
// packed image
Mat(int w, int h, size_t elemsize, int elempack, Allocator* allocator = 0);
// packed dim
Mat(int w, int h, int c, size_t elemsize, int elempack, Allocator* allocator = 0);
// packed cube
Mat(int w, int h, int d, int c, size_t elemsize, int elempack, Allocator* allocator = 0);
// copy
Mat(const Mat& m);
// external vec
Mat(int w, void* data, size_t elemsize = 4u, Allocator* allocator = 0);
// external image
Mat(int w, int h, void* data, size_t elemsize = 4u, Allocator* allocator = 0);
// external dim
Mat(int w, int h, int c, void* data, size_t elemsize = 4u, Allocator* allocator = 0);
// external cube
Mat(int w, int h, int d, int c, void* data, size_t elemsize = 4u, Allocator* allocator = 0);
// external packed vec
Mat(int w, void* data, size_t elemsize, int elempack, Allocator* allocator = 0);
// external packed image
Mat(int w, int h, void* data, size_t elemsize, int elempack, Allocator* allocator = 0);
// external packed dim
Mat(int w, int h, int c, void* data, size_t elemsize, int elempack, Allocator* allocator = 0);
// external packed cube
Mat(int w, int h, int d, int c, void* data, size_t elemsize, int elempack, Allocator* allocator = 0);
// release
~Mat();
// assign
Mat& operator=(const Mat& m);
// set all
void fill(float v);
void fill(int v);
#if __ARM_NEON
void fill(float32x4_t _v);
void fill(uint16x4_t _v);
#if !defined(_MSC_VER)
void fill(int32x4_t _v);
#endif
void fill(int32x4_t _v0, int32x4_t _v1);
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if !defined(_MSC_VER)
void fill(float16x4_t _v);
void fill(float16x8_t _v);
#endif
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#endif // __ARM_NEON
#if __SSE2__
#if __AVX__
#if __AVX512F__
void fill(__m512 _v);
#endif // __AVX512F__
void fill(__m256 _v, int i = 0);
#endif // __AVX__
void fill(__m128 _v);
void fill(__m128i _v);
#endif // __SSE2__
#if __mips_msa
void fill(v4f32 _v);
#endif // __mips_msa
#if __loongarch_sx
void fill(__m128 _v);
#endif //__loongarch_sx
#if __riscv_vector
void fill(vfloat32m1_t _v);
void fill(vuint16m1_t _v);
void fill(vint8m1_t _v);
#if __riscv_zvfh
void fill(vfloat16m1_t _v);
#endif // __riscv_zvfh
#endif // __riscv_vector
template<typename T>
void fill(T v);
// deep copy
Mat clone(Allocator* allocator = 0) const;
// deep copy from other mat, inplace
void clone_from(const ncnn::Mat& mat, Allocator* allocator = 0);
// reshape vec
Mat reshape(int w, Allocator* allocator = 0) const;
// reshape image
Mat reshape(int w, int h, Allocator* allocator = 0) const;
// reshape dim
Mat reshape(int w, int h, int c, Allocator* allocator = 0) const;
// reshape cube
Mat reshape(int w, int h, int d, int c, Allocator* allocator = 0) const;
// allocate vec
void create(int w, size_t elemsize = 4u, Allocator* allocator = 0);
// allocate image
void create(int w, int h, size_t elemsize = 4u, Allocator* allocator = 0);
// allocate dim
void create(int w, int h, int c, size_t elemsize = 4u, Allocator* allocator = 0);
// allocate cube
void create(int w, int h, int d, int c, size_t elemsize = 4u, Allocator* allocator = 0);
// allocate packed vec
void create(int w, size_t elemsize, int elempack, Allocator* allocator = 0);
// allocate packed image
void create(int w, int h, size_t elemsize, int elempack, Allocator* allocator = 0);
// allocate packed dim
void create(int w, int h, int c, size_t elemsize, int elempack, Allocator* allocator = 0);
// allocate packed cube
void create(int w, int h, int d, int c, size_t elemsize, int elempack, Allocator* allocator = 0);
// allocate like
void create_like(const Mat& m, Allocator* allocator = 0);
#if NCNN_VULKAN
// allocate like
void create_like(const VkMat& m, Allocator* allocator = 0);
// allocate like
void create_like(const VkImageMat& im, Allocator* allocator = 0);
#endif // NCNN_VULKAN
// refcount++
void addref();
// refcount--
void release();
bool empty() const;
size_t total() const;
// bits per element
int elembits() const;
// shape only
Mat shape() const;
// data reference
Mat channel(int c);
const Mat channel(int c) const;
Mat depth(int z);
const Mat depth(int z) const;
float* row(int y);
const float* row(int y) const;
template<typename T>
T* row(int y);
template<typename T>
const T* row(int y) const;
// range reference
Mat channel_range(int c, int channels);
const Mat channel_range(int c, int channels) const;
Mat depth_range(int z, int depths);
const Mat depth_range(int z, int depths) const;
Mat row_range(int y, int rows);
const Mat row_range(int y, int rows) const;
Mat range(int x, int n);
const Mat range(int x, int n) const;
// access raw data
template<typename T>
operator T*();
template<typename T>
operator const T*() const;
// convenient access float vec element
float& operator[](size_t i);
const float& operator[](size_t i) const;
#if NCNN_PIXEL
enum PixelType
{
PIXEL_CONVERT_SHIFT = 16,
PIXEL_FORMAT_MASK = 0x0000ffff,
PIXEL_CONVERT_MASK = 0xffff0000,
PIXEL_RGB = 1,
PIXEL_BGR = 2,
PIXEL_GRAY = 3,
PIXEL_RGBA = 4,
PIXEL_BGRA = 5,
PIXEL_RGB2BGR = PIXEL_RGB | (PIXEL_BGR << PIXEL_CONVERT_SHIFT),
PIXEL_RGB2GRAY = PIXEL_RGB | (PIXEL_GRAY << PIXEL_CONVERT_SHIFT),
PIXEL_RGB2RGBA = PIXEL_RGB | (PIXEL_RGBA << PIXEL_CONVERT_SHIFT),
PIXEL_RGB2BGRA = PIXEL_RGB | (PIXEL_BGRA << PIXEL_CONVERT_SHIFT),
PIXEL_BGR2RGB = PIXEL_BGR | (PIXEL_RGB << PIXEL_CONVERT_SHIFT),
PIXEL_BGR2GRAY = PIXEL_BGR | (PIXEL_GRAY << PIXEL_CONVERT_SHIFT),
PIXEL_BGR2RGBA = PIXEL_BGR | (PIXEL_RGBA << PIXEL_CONVERT_SHIFT),
PIXEL_BGR2BGRA = PIXEL_BGR | (PIXEL_BGRA << PIXEL_CONVERT_SHIFT),
PIXEL_GRAY2RGB = PIXEL_GRAY | (PIXEL_RGB << PIXEL_CONVERT_SHIFT),
PIXEL_GRAY2BGR = PIXEL_GRAY | (PIXEL_BGR << PIXEL_CONVERT_SHIFT),
PIXEL_GRAY2RGBA = PIXEL_GRAY | (PIXEL_RGBA << PIXEL_CONVERT_SHIFT),
PIXEL_GRAY2BGRA = PIXEL_GRAY | (PIXEL_BGRA << PIXEL_CONVERT_SHIFT),
PIXEL_RGBA2RGB = PIXEL_RGBA | (PIXEL_RGB << PIXEL_CONVERT_SHIFT),
PIXEL_RGBA2BGR = PIXEL_RGBA | (PIXEL_BGR << PIXEL_CONVERT_SHIFT),
PIXEL_RGBA2GRAY = PIXEL_RGBA | (PIXEL_GRAY << PIXEL_CONVERT_SHIFT),
PIXEL_RGBA2BGRA = PIXEL_RGBA | (PIXEL_BGRA << PIXEL_CONVERT_SHIFT),
PIXEL_BGRA2RGB = PIXEL_BGRA | (PIXEL_RGB << PIXEL_CONVERT_SHIFT),
PIXEL_BGRA2BGR = PIXEL_BGRA | (PIXEL_BGR << PIXEL_CONVERT_SHIFT),
PIXEL_BGRA2GRAY = PIXEL_BGRA | (PIXEL_GRAY << PIXEL_CONVERT_SHIFT),
PIXEL_BGRA2RGBA = PIXEL_BGRA | (PIXEL_RGBA << PIXEL_CONVERT_SHIFT),
};
// convenient construct from pixel data
static Mat from_pixels(const unsigned char* pixels, int type, int w, int h, Allocator* allocator = 0);
// convenient construct from pixel data with stride(bytes-per-row) parameter
static Mat from_pixels(const unsigned char* pixels, int type, int w, int h, int stride, Allocator* allocator = 0);
// convenient construct from pixel data and resize to specific size
static Mat from_pixels_resize(const unsigned char* pixels, int type, int w, int h, int target_width, int target_height, Allocator* allocator = 0);
// convenient construct from pixel data and resize to specific size with stride(bytes-per-row) parameter
static Mat from_pixels_resize(const unsigned char* pixels, int type, int w, int h, int stride, int target_width, int target_height, Allocator* allocator = 0);
// convenient construct from pixel data roi
static Mat from_pixels_roi(const unsigned char* pixels, int type, int w, int h, int roix, int roiy, int roiw, int roih, Allocator* allocator = 0);
// convenient construct from pixel data roi with stride(bytes-per-row) parameter
static Mat from_pixels_roi(const unsigned char* pixels, int type, int w, int h, int stride, int roix, int roiy, int roiw, int roih, Allocator* allocator = 0);
// convenient construct from pixel data roi and resize to specific size
static Mat from_pixels_roi_resize(const unsigned char* pixels, int type, int w, int h, int roix, int roiy, int roiw, int roih, int target_width, int target_height, Allocator* allocator = 0);
// convenient construct from pixel data roi and resize to specific size with stride(bytes-per-row) parameter
static Mat from_pixels_roi_resize(const unsigned char* pixels, int type, int w, int h, int stride, int roix, int roiy, int roiw, int roih, int target_width, int target_height, Allocator* allocator = 0);
// convenient export to pixel data
void to_pixels(unsigned char* pixels, int type) const;
// convenient export to pixel data with stride(bytes-per-row) parameter
void to_pixels(unsigned char* pixels, int type, int stride) const;
// convenient export to pixel data and resize to specific size
void to_pixels_resize(unsigned char* pixels, int type, int target_width, int target_height) const;
// convenient export to pixel data and resize to specific size with stride(bytes-per-row) parameter
void to_pixels_resize(unsigned char* pixels, int type, int target_width, int target_height, int target_stride) const;
#if NCNN_PLATFORM_API
#if __ANDROID_API__ >= 9
// convenient construct from android Bitmap
static Mat from_android_bitmap(JNIEnv* env, jobject bitmap, int type_to, Allocator* allocator = 0);
// convenient construct from android Bitmap and resize to specific size
static Mat from_android_bitmap_resize(JNIEnv* env, jobject bitmap, int type_to, int target_width, int target_height, Allocator* allocator = 0);
// convenient construct from android Bitmap roi
static Mat from_android_bitmap_roi(JNIEnv* env, jobject bitmap, int type_to, int roix, int roiy, int roiw, int roih, Allocator* allocator = 0);
// convenient construct from android Bitmap roi and resize to specific size
static Mat from_android_bitmap_roi_resize(JNIEnv* env, jobject bitmap, int type_to, int roix, int roiy, int roiw, int roih, int target_width, int target_height, Allocator* allocator = 0);
// convenient export to android Bitmap and resize to the android Bitmap size
void to_android_bitmap(JNIEnv* env, jobject bitmap, int type_from) const;
#endif // __ANDROID_API__ >= 9
#endif // NCNN_PLATFORM_API
#endif // NCNN_PIXEL
// substract channel-wise mean values, then multiply by normalize values, pass 0 to skip
void substract_mean_normalize(const float* mean_vals, const float* norm_vals);
// convenient construct from half precision floating point data
static Mat from_float16(const unsigned short* data, int size);
// pointer to the data
void* data;
// pointer to the reference counter
// when points to user-allocated data, the pointer is NULL
int* refcount;
// element size in bytes
// 4 = float32/int32
// 2 = float16
// 1 = int8/uint8
// 0 = empty
size_t elemsize;
// packed count inside element
// c/1-d-h-w-1 c/1-h-w-1 h/1-w-1 w/1-1 scalar
// c/4-d-h-w-4 c/4-h-w-4 h/4-w-4 w/4-4 sse/neon
// c/8-d-h-w-8 c/8-h-w-8 h/8-w-8 w/8-8 avx/fp16
int elempack;
// the allocator
Allocator* allocator;
// the dimension rank
int dims;
int w;
int h;
int d;
int c;
size_t cstep;
};
#if NCNN_VULKAN
// the three dimension matrix, vulkan version
class NCNN_EXPORT VkMat
{
public:
// empty
VkMat();
// vec
VkMat(int w, size_t elemsize, VkAllocator* allocator);
// image
VkMat(int w, int h, size_t elemsize, VkAllocator* allocator);
// dim
VkMat(int w, int h, int c, size_t elemsize, VkAllocator* allocator);
// cube
VkMat(int w, int h, int d, int c, size_t elemsize, VkAllocator* allocator);
// packed vec
VkMat(int w, size_t elemsize, int elempack, VkAllocator* allocator);
// packed image
VkMat(int w, int h, size_t elemsize, int elempack, VkAllocator* allocator);
// packed dim
VkMat(int w, int h, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// packed cube
VkMat(int w, int h, int d, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// copy
VkMat(const VkMat& m);
// external vec
VkMat(int w, VkBufferMemory* data, size_t elemsize, VkAllocator* allocator);
// external image
VkMat(int w, int h, VkBufferMemory* data, size_t elemsize, VkAllocator* allocator);
// external dim
VkMat(int w, int h, int c, VkBufferMemory* data, size_t elemsize, VkAllocator* allocator);
// external cube
VkMat(int w, int h, int d, int c, VkBufferMemory* data, size_t elemsize, VkAllocator* allocator);
// external packed vec
VkMat(int w, VkBufferMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// external packed image
VkMat(int w, int h, VkBufferMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// external packed dim
VkMat(int w, int h, int c, VkBufferMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// external packed cube
VkMat(int w, int h, int d, int c, VkBufferMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// release
~VkMat();
// assign
VkMat& operator=(const VkMat& m);
// allocate vec
void create(int w, size_t elemsize, VkAllocator* allocator);
// allocate image
void create(int w, int h, size_t elemsize, VkAllocator* allocator);
// allocate dim
void create(int w, int h, int c, size_t elemsize, VkAllocator* allocator);
// allocate cube
void create(int w, int h, int d, int c, size_t elemsize, VkAllocator* allocator);
// allocate packed vec
void create(int w, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate packed image
void create(int w, int h, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate packed dim
void create(int w, int h, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate packed cube
void create(int w, int h, int d, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate like
void create_like(const Mat& m, VkAllocator* allocator);
// allocate like
void create_like(const VkMat& m, VkAllocator* allocator);
// allocate like
void create_like(const VkImageMat& im, VkAllocator* allocator);
// mapped
Mat mapped() const;
void* mapped_ptr() const;
// refcount++
void addref();
// refcount--
void release();
bool empty() const;
size_t total() const;
// bits per element
int elembits() const;
// shape only
Mat shape() const;
// low-level reference
VkBuffer buffer() const;
size_t buffer_offset() const;
size_t buffer_capacity() const;
// device buffer
VkBufferMemory* data;
// pointer to the reference counter
// when points to user-allocated data, the pointer is NULL
int* refcount;
// element size in bytes
// 4 = float32/int32
// 2 = float16
// 1 = int8/uint8
// 0 = empty
size_t elemsize;
// packed count inside element
// c/1-d-h-w-1 c/1-h-w-1 h/1-w-1 w/1-1 scalar
// c/4-d-h-w-4 c/4-h-w-4 h/4-w-4 w/4-4 sse/neon
// c/8-d-h-w-8 c/8-h-w-8 h/8-w-8 w/8-8 avx/fp16
int elempack;
// the allocator
VkAllocator* allocator;
// the dimension rank
int dims;
int w;
int h;
int d;
int c;
size_t cstep;
};
class NCNN_EXPORT VkImageMat
{
public:
// empty
VkImageMat();
// vec
VkImageMat(int w, size_t elemsize, VkAllocator* allocator);
// image
VkImageMat(int w, int h, size_t elemsize, VkAllocator* allocator);
// dim
VkImageMat(int w, int h, int c, size_t elemsize, VkAllocator* allocator);
// cube
VkImageMat(int w, int h, int d, int c, size_t elemsize, VkAllocator* allocator);
// packed vec
VkImageMat(int w, size_t elemsize, int elempack, VkAllocator* allocator);
// packed image
VkImageMat(int w, int h, size_t elemsize, int elempack, VkAllocator* allocator);
// packed dim
VkImageMat(int w, int h, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// packed cube
VkImageMat(int w, int h, int d, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// copy
VkImageMat(const VkImageMat& m);
// external vec
VkImageMat(int w, VkImageMemory* data, size_t elemsize, VkAllocator* allocator);
// external image
VkImageMat(int w, int h, VkImageMemory* data, size_t elemsize, VkAllocator* allocator);
// external dim
VkImageMat(int w, int h, int c, VkImageMemory* data, size_t elemsize, VkAllocator* allocator);
// external cube
VkImageMat(int w, int h, int d, int c, VkImageMemory* data, size_t elemsize, VkAllocator* allocator);
// external packed vec
VkImageMat(int w, VkImageMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// external packed image
VkImageMat(int w, int h, VkImageMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// external packed dim
VkImageMat(int w, int h, int c, VkImageMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// external packed cube
VkImageMat(int w, int h, int d, int c, VkImageMemory* data, size_t elemsize, int elempack, VkAllocator* allocator);
// release
~VkImageMat();
// assign
VkImageMat& operator=(const VkImageMat& m);
// allocate vec
void create(int w, size_t elemsize, VkAllocator* allocator);
// allocate image
void create(int w, int h, size_t elemsize, VkAllocator* allocator);
// allocate dim
void create(int w, int h, int c, size_t elemsize, VkAllocator* allocator);
// allocate cube
void create(int w, int h, int d, int c, size_t elemsize, VkAllocator* allocator);
// allocate packed vec
void create(int w, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate packed image
void create(int w, int h, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate packed dim
void create(int w, int h, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate packed cube
void create(int w, int h, int d, int c, size_t elemsize, int elempack, VkAllocator* allocator);
// allocate like
void create_like(const Mat& m, VkAllocator* allocator);
// allocate like
void create_like(const VkMat& m, VkAllocator* allocator);
// allocate like
void create_like(const VkImageMat& im, VkAllocator* allocator);
// mapped
Mat mapped() const;
void* mapped_ptr() const;
// refcount++
void addref();
// refcount--
void release();
bool empty() const;
size_t total() const;
// bits per element
int elembits() const;
// shape only
Mat shape() const;
// low-level reference
VkImage image() const;
VkImageView imageview() const;
#if NCNN_PLATFORM_API
#if __ANDROID_API__ >= 26
// convenient construct from android hardware buffer
static VkImageMat from_android_hardware_buffer(VkAndroidHardwareBufferImageAllocator* allocator);
#endif // __ANDROID_API__ >= 26
#endif // NCNN_PLATFORM_API
// device image
VkImageMemory* data;
// pointer to the reference counter
// when points to user-allocated data, the pointer is NULL
int* refcount;
// element size in bytes
// 4 = float32/int32
// 2 = float16
// 1 = int8/uint8
// 0 = empty
size_t elemsize;
// packed count inside element
// c/1-d-h-w-1 c/1-h-w-1 h/1-w-1 w/1-1 scalar
// c/4-d-h-w-4 c/4-h-w-4 h/4-w-4 w/4-4 sse/neon
// c/8-d-h-w-8 c/8-h-w-8 h/8-w-8 w/8-8 avx/fp16
int elempack;
// the allocator
VkAllocator* allocator;
// the dimension rank
int dims;
int w;
int h;
int d;
int c;
};
// type for vulkan specialization constant and push constant
union vk_specialization_type
{
int i;
float f;
uint32_t u32;
};
union vk_constant_type
{
int i;
float f;
};
#endif // NCNN_VULKAN
// misc function
#if NCNN_PIXEL
// convert yuv420sp(nv21) to rgb, the fast approximate version
NCNN_EXPORT void yuv420sp2rgb(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb);
// convert yuv420sp(nv12) to rgb, the fast approximate version
NCNN_EXPORT void yuv420sp2rgb_nv12(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb);
// convert yuv420sp(nv21) to rgb with half resize, the faster approximate version
NCNN_EXPORT void yuv420sp2rgb_half(const unsigned char* yuv420sp, int w, int h, unsigned char* rgb);
// image pixel bilinear resize
NCNN_EXPORT void resize_bilinear_c1(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h);
NCNN_EXPORT void resize_bilinear_c2(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h);
NCNN_EXPORT void resize_bilinear_c3(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h);
NCNN_EXPORT void resize_bilinear_c4(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h);
// image pixel bilinear resize with stride(bytes-per-row) parameter
NCNN_EXPORT void resize_bilinear_c1(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride);
NCNN_EXPORT void resize_bilinear_c2(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride);
NCNN_EXPORT void resize_bilinear_c3(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride);
NCNN_EXPORT void resize_bilinear_c4(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride);
// image pixel bilinear resize, convenient wrapper for yuv420sp(nv21/nv12)
NCNN_EXPORT void resize_bilinear_yuv420sp(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h);
#endif // NCNN_PIXEL
#if NCNN_PIXEL_ROTATE
// type is the from type, 6 means rotating from 6 to 1
//
// 1 2 3 4 5 6 7 8
//
// 888888 888888 88 88 8888888888 88 88 8888888888
// 88 88 88 88 88 88 88 88 88 88 88 88
// 8888 8888 8888 8888 88 8888888888 8888888888 88
// 88 88 88 88
// 88 88 888888 888888
//
// ref http://sylvana.net/jpegcrop/exif_orientation.html
// image pixel kanna rotate
NCNN_EXPORT void kanna_rotate_c1(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, int type);
NCNN_EXPORT void kanna_rotate_c2(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, int type);
NCNN_EXPORT void kanna_rotate_c3(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, int type);
NCNN_EXPORT void kanna_rotate_c4(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, int type);
// image pixel kanna rotate with stride(bytes-per-row) parameter
NCNN_EXPORT void kanna_rotate_c1(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, int type);
NCNN_EXPORT void kanna_rotate_c2(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, int type);
NCNN_EXPORT void kanna_rotate_c3(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, int type);
NCNN_EXPORT void kanna_rotate_c4(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, int type);
// image pixel kanna rotate, convenient wrapper for yuv420sp(nv21/nv12)
NCNN_EXPORT void kanna_rotate_yuv420sp(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, int type);
#endif // NCNN_PIXEL_ROTATE
#if NCNN_PIXEL_AFFINE
// resolve affine transform matrix from rotation angle, scale factor and x y offset
NCNN_EXPORT void get_rotation_matrix(float angle, float scale, float dx, float dy, float* tm);
// resolve affine transform matrix from two set of points, num_point must be >= 2
NCNN_EXPORT void get_affine_transform(const float* points_from, const float* points_to, int num_point, float* tm);
// resolve the inversion affine transform matrix
NCNN_EXPORT void invert_affine_transform(const float* tm, float* tm_inv);
// image pixel bilinear warpaffine inverse transform, set -233 for transparent border color, the color RGBA is little-endian encoded
NCNN_EXPORT void warpaffine_bilinear_c1(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, const float* tm, int type = 0, unsigned int v = 0);
NCNN_EXPORT void warpaffine_bilinear_c2(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, const float* tm, int type = 0, unsigned int v = 0);
NCNN_EXPORT void warpaffine_bilinear_c3(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, const float* tm, int type = 0, unsigned int v = 0);
NCNN_EXPORT void warpaffine_bilinear_c4(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, const float* tm, int type = 0, unsigned int v = 0);
// image pixel bilinear warpaffine inverse transform with stride(bytes-per-row) parameter, set -233 for transparent border color, the color RGBA is little-endian encoded
NCNN_EXPORT void warpaffine_bilinear_c1(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, const float* tm, int type = 0, unsigned int v = 0);
NCNN_EXPORT void warpaffine_bilinear_c2(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, const float* tm, int type = 0, unsigned int v = 0);
NCNN_EXPORT void warpaffine_bilinear_c3(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, const float* tm, int type = 0, unsigned int v = 0);
NCNN_EXPORT void warpaffine_bilinear_c4(const unsigned char* src, int srcw, int srch, int srcstride, unsigned char* dst, int w, int h, int stride, const float* tm, int type = 0, unsigned int v = 0);
// image pixel bilinear warpaffine, convenient wrapper for yuv420sp(nv21/nv12), set -233 for transparent border color, the color YUV_ is little-endian encoded
NCNN_EXPORT void warpaffine_bilinear_yuv420sp(const unsigned char* src, int srcw, int srch, unsigned char* dst, int w, int h, const float* tm, int type = 0, unsigned int v = 0);
#endif // NCNN_PIXEL_AFFINE
#if NCNN_PIXEL_DRAWING
// draw rectangle, set thickness -1 for filled rectangle, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_rectangle_c1(unsigned char* pixels, int w, int h, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
NCNN_EXPORT void draw_rectangle_c2(unsigned char* pixels, int w, int h, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
NCNN_EXPORT void draw_rectangle_c3(unsigned char* pixels, int w, int h, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
NCNN_EXPORT void draw_rectangle_c4(unsigned char* pixels, int w, int h, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
// draw rectangle with stride(bytes-per-row) parameter, set thickness -1 for filled rectangle, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_rectangle_c1(unsigned char* pixels, int w, int h, int stride, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
NCNN_EXPORT void draw_rectangle_c2(unsigned char* pixels, int w, int h, int stride, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
NCNN_EXPORT void draw_rectangle_c3(unsigned char* pixels, int w, int h, int stride, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
NCNN_EXPORT void draw_rectangle_c4(unsigned char* pixels, int w, int h, int stride, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
// draw rectangle, convenient wrapper for yuv420sp(nv21/nv12), set thickness -1 for filled rectangle, the color YUV_ is little-endian encoded
NCNN_EXPORT void draw_rectangle_yuv420sp(unsigned char* yuv420sp, int w, int h, int rx, int ry, int rw, int rh, unsigned int color, int thickness);
// draw circle, set thickness -1 for filled circle, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_circle_c1(unsigned char* pixels, int w, int h, int cx, int cy, int radius, unsigned int color, int thickness);
NCNN_EXPORT void draw_circle_c2(unsigned char* pixels, int w, int h, int cx, int cy, int radius, unsigned int color, int thickness);
NCNN_EXPORT void draw_circle_c3(unsigned char* pixels, int w, int h, int cx, int cy, int radius, unsigned int color, int thickness);
NCNN_EXPORT void draw_circle_c4(unsigned char* pixels, int w, int h, int cx, int cy, int radius, unsigned int color, int thickness);
// draw circle with stride(bytes-per-row) parameter, set thickness -1 for filled circle, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_circle_c1(unsigned char* pixels, int w, int h, int stride, int cx, int cy, int radius, unsigned int color, int thickness);
NCNN_EXPORT void draw_circle_c2(unsigned char* pixels, int w, int h, int stride, int cx, int cy, int radius, unsigned int color, int thickness);
NCNN_EXPORT void draw_circle_c3(unsigned char* pixels, int w, int h, int stride, int cx, int cy, int radius, unsigned int color, int thickness);
NCNN_EXPORT void draw_circle_c4(unsigned char* pixels, int w, int h, int stride, int cx, int cy, int radius, unsigned int color, int thickness);
// draw circle, convenient wrapper for yuv420sp(nv21/nv12), set thickness -1 for filled circle, the color YUV_ is little-endian encoded
NCNN_EXPORT void draw_circle_yuv420sp(unsigned char* yuv420sp, int w, int h, int cx, int cy, int radius, unsigned int color, int thickness);
// draw line, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_line_c1(unsigned char* pixels, int w, int h, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
NCNN_EXPORT void draw_line_c2(unsigned char* pixels, int w, int h, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
NCNN_EXPORT void draw_line_c3(unsigned char* pixels, int w, int h, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
NCNN_EXPORT void draw_line_c4(unsigned char* pixels, int w, int h, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
// draw line with stride(bytes-per-row) parameter, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_line_c1(unsigned char* pixels, int w, int h, int stride, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
NCNN_EXPORT void draw_line_c2(unsigned char* pixels, int w, int h, int stride, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
NCNN_EXPORT void draw_line_c3(unsigned char* pixels, int w, int h, int stride, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
NCNN_EXPORT void draw_line_c4(unsigned char* pixels, int w, int h, int stride, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
// draw line, convenient wrapper for yuv420sp(nv21/nv12), the color YUV_ is little-endian encoded
NCNN_EXPORT void draw_line_yuv420sp(unsigned char* yuv420sp, int w, int h, int x0, int y0, int x1, int y1, unsigned int color, int thickness);
// resolve text bounding box size
NCNN_EXPORT void get_text_drawing_size(const char* text, int fontpixelsize, int* w, int* h);
// draw ascii printables and newline, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_text_c1(unsigned char* pixels, int w, int h, const char* text, int x, int y, int fontpixelsize, unsigned int color);
NCNN_EXPORT void draw_text_c2(unsigned char* pixels, int w, int h, const char* text, int x, int y, int fontpixelsize, unsigned int color);
NCNN_EXPORT void draw_text_c3(unsigned char* pixels, int w, int h, const char* text, int x, int y, int fontpixelsize, unsigned int color);
NCNN_EXPORT void draw_text_c4(unsigned char* pixels, int w, int h, const char* text, int x, int y, int fontpixelsize, unsigned int color);
// draw ascii printables and newline with stride(bytes-per-row) parameter, the color RGBA is little-endian encoded
NCNN_EXPORT void draw_text_c1(unsigned char* pixels, int w, int h, int stride, const char* text, int x, int y, int fontpixelsize, unsigned int color);
NCNN_EXPORT void draw_text_c2(unsigned char* pixels, int w, int h, int stride, const char* text, int x, int y, int fontpixelsize, unsigned int color);
NCNN_EXPORT void draw_text_c3(unsigned char* pixels, int w, int h, int stride, const char* text, int x, int y, int fontpixelsize, unsigned int color);
NCNN_EXPORT void draw_text_c4(unsigned char* pixels, int w, int h, int stride, const char* text, int x, int y, int fontpixelsize, unsigned int color);
// draw ascii printables and newline, convenient wrapper for yuv420sp(nv21/nv12), the color YUV_ is little-endian encoded
NCNN_EXPORT void draw_text_yuv420sp(unsigned char* yuv420sp, int w, int h, const char* text, int x, int y, int fontpixelsize, unsigned int color);
#endif // NCNN_PIXEL_DRAWING
// type conversion
// convert float to half precision floating point
NCNN_EXPORT unsigned short float32_to_float16(float value);
// convert half precision floating point to float
NCNN_EXPORT float float16_to_float32(unsigned short value);
// convert float to brain half
NCNN_EXPORT NCNN_FORCEINLINE unsigned short float32_to_bfloat16(float value)
{
// 16 : 16
union
{
unsigned int u;
float f;
} tmp;
tmp.f = value;
return tmp.u >> 16;
}
// convert brain half to float
NCNN_EXPORT NCNN_FORCEINLINE float bfloat16_to_float32(unsigned short value)
{
// 16 : 16
union
{
unsigned int u;
float f;
} tmp;
tmp.u = value << 16;
return tmp.f;
}
// mat process
enum BorderType
{
BORDER_CONSTANT = 0,
BORDER_REPLICATE = 1,
BORDER_REFLECT = 2,
BORDER_TRANSPARENT = -233,
};
NCNN_EXPORT void copy_make_border(const Mat& src, Mat& dst, int top, int bottom, int left, int right, int type, float v, const Option& opt = Option());
NCNN_EXPORT void copy_make_border_3d(const Mat& src, Mat& dst, int top, int bottom, int left, int right, int front, int behind, int type, float v, const Option& opt = Option());
NCNN_EXPORT void copy_cut_border(const Mat& src, Mat& dst, int top, int bottom, int left, int right, const Option& opt = Option());
NCNN_EXPORT void copy_cut_border_3d(const Mat& src, Mat& dst, int top, int bottom, int left, int right, int front, int behind, const Option& opt = Option());
NCNN_EXPORT void resize_nearest(const Mat& src, Mat& dst, int w, int h, const Option& opt = Option());
NCNN_EXPORT void resize_bilinear(const Mat& src, Mat& dst, int w, int h, const Option& opt = Option());
NCNN_EXPORT void resize_bicubic(const Mat& src, Mat& dst, int w, int h, const Option& opt = Option());
NCNN_EXPORT void convert_packing(const Mat& src, Mat& dst, int elempack, const Option& opt = Option());
NCNN_EXPORT void flatten(const Mat& src, Mat& dst, const Option& opt = Option());
NCNN_EXPORT void cast_float32_to_float16(const Mat& src, Mat& dst, const Option& opt = Option());
NCNN_EXPORT void cast_float16_to_float32(const Mat& src, Mat& dst, const Option& opt = Option());
NCNN_EXPORT void cast_int8_to_float32(const Mat& src, Mat& dst, const Option& opt = Option());
NCNN_EXPORT void cast_float32_to_bfloat16(const Mat& src, Mat& dst, const Option& opt = Option());
NCNN_EXPORT void cast_bfloat16_to_float32(const Mat& src, Mat& dst, const Option& opt = Option());
NCNN_EXPORT void quantize_to_int8(const Mat& src, Mat& dst, const Mat& scale_data, const Option& opt = Option());
NCNN_EXPORT void dequantize_from_int32(const Mat& src, Mat& dst, const Mat& scale_data, const Mat& bias_data, const Option& opt = Option());
NCNN_EXPORT void requantize_from_int32_to_int8(const Mat& src, Mat& dst, const Mat& scale_in_data, const Mat& scale_out_data, const Mat& bias_data, int activation_type, const Mat& activation_params, const Option& opt = Option());
NCNN_FORCEINLINE Mat::Mat()
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
}
NCNN_FORCEINLINE Mat::Mat(int _w, size_t _elemsize, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _elemsize, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, size_t _elemsize, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _h, _elemsize, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _c, size_t _elemsize, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _h, _c, _elemsize, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _d, int _c, size_t _elemsize, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _h, _d, _c, _elemsize, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _elemsize, _elempack, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _h, _elemsize, _elempack, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _c, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _h, _c, _elemsize, _elempack, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _d, int _c, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(0), refcount(0), elemsize(0), elempack(0), allocator(0), dims(0), w(0), h(0), d(0), c(0), cstep(0)
{
create(_w, _h, _d, _c, _elemsize, _elempack, _allocator);
}
NCNN_FORCEINLINE Mat::Mat(const Mat& m)
: data(m.data), refcount(m.refcount), elemsize(m.elemsize), elempack(m.elempack), allocator(m.allocator), dims(m.dims), w(m.w), h(m.h), d(m.d), c(m.c), cstep(m.cstep)
{
addref();
}
NCNN_FORCEINLINE Mat::Mat(int _w, void* _data, size_t _elemsize, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(1), allocator(_allocator), dims(1), w(_w), h(1), d(1), c(1)
{
cstep = w;
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, void* _data, size_t _elemsize, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(1), allocator(_allocator), dims(2), w(_w), h(_h), d(1), c(1)
{
cstep = (size_t)w * h;
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _c, void* _data, size_t _elemsize, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(1), allocator(_allocator), dims(3), w(_w), h(_h), d(1), c(_c)
{
cstep = alignSize((size_t)w * h * elemsize, 16) / elemsize;
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _d, int _c, void* _data, size_t _elemsize, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(1), allocator(_allocator), dims(4), w(_w), h(_h), d(_d), c(_c)
{
cstep = alignSize((size_t)w * h * d * elemsize, 16) / elemsize;
}
NCNN_FORCEINLINE Mat::Mat(int _w, void* _data, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(_elempack), allocator(_allocator), dims(1), w(_w), h(1), d(1), c(1)
{
cstep = w;
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, void* _data, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(_elempack), allocator(_allocator), dims(2), w(_w), h(_h), d(1), c(1)
{
cstep = (size_t)w * h;
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _c, void* _data, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(_elempack), allocator(_allocator), dims(3), w(_w), h(_h), d(1), c(_c)
{
cstep = alignSize((size_t)w * h * elemsize, 16) / elemsize;
}
NCNN_FORCEINLINE Mat::Mat(int _w, int _h, int _d, int _c, void* _data, size_t _elemsize, int _elempack, Allocator* _allocator)
: data(_data), refcount(0), elemsize(_elemsize), elempack(_elempack), allocator(_allocator), dims(4), w(_w), h(_h), d(_d), c(_c)
{
cstep = alignSize((size_t)w * h * d * elemsize, 16) / elemsize;
}
NCNN_FORCEINLINE Mat::~Mat()
{
release();
}
NCNN_FORCEINLINE void Mat::fill(float _v)
{
int size = (int)total();
float* ptr = (float*)data;
int i = 0;
#if __ARM_NEON
float32x4_t _c = vdupq_n_f32(_v);
for (; i + 3 < size; i += 4)
{
vst1q_f32(ptr, _c);
ptr += 4;
}
#endif // __ARM_NEON
for (; i < size; i++)
{
*ptr++ = _v;
}
}
NCNN_FORCEINLINE void Mat::fill(int _v)
{
int size = (int)total();
int* ptr = (int*)data;
int i = 0;
#if __ARM_NEON
int32x4_t _c = vdupq_n_s32(_v);
for (; i + 3 < size; i += 4)
{
vst1q_s32(ptr, _c);
ptr += 4;
}
#endif // __ARM_NEON
for (; i < size; i++)
{
*ptr++ = _v;
}
}
#if __ARM_NEON
NCNN_FORCEINLINE void Mat::fill(float32x4_t _v)
{
int size = (int)total();
float* ptr = (float*)data;
for (int i = 0; i < size; i++)
{
vst1q_f32(ptr, _v);
ptr += 4;
}
}
NCNN_FORCEINLINE void Mat::fill(uint16x4_t _v)
{
int size = (int)total();
unsigned short* ptr = (unsigned short*)data;
for (int i = 0; i < size; i++)
{
vst1_u16(ptr, _v);
ptr += 4;
}
}
#if !defined(_MSC_VER)
NCNN_FORCEINLINE void Mat::fill(int32x4_t _v)
{
int size = (int)total();
int* ptr = (int*)data;
for (int i = 0; i < size; i++)
{
vst1q_s32(ptr, _v);
ptr += 4;
}
}
#endif
NCNN_FORCEINLINE void Mat::fill(int32x4_t _v0, int32x4_t _v1)
{
int size = (int)total();
int* ptr = (int*)data;
for (int i = 0; i < size; i++)
{
vst1q_s32(ptr, _v0);
vst1q_s32(ptr + 4, _v1);
ptr += 8;
}
}
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#if !defined(_MSC_VER)
NCNN_FORCEINLINE void Mat::fill(float16x4_t _v)
{
int size = (int)total();
__fp16* ptr = (__fp16*)data;
for (int i = 0; i < size; i++)
{
vst1_f16(ptr, _v);
ptr += 4;
}