forked from Megvii-BaseDetection/YOLOX
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
210 lines (182 loc) · 6.19 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
import argparse
import os
import random
import warnings
from loguru import logger
import torch
import torch.backends.cudnn as cudnn
from torch.nn.parallel import DistributedDataParallel as DDP
from yolox.core import launch
from yolox.exp import get_exp
from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger
def make_parser():
parser = argparse.ArgumentParser("YOLOX Eval")
parser.add_argument("-expn", "--experiment-name", type=str, default=None)
parser.add_argument("-n", "--name", type=str, default=None, help="model name")
# distributed
parser.add_argument(
"--dist-backend", default="nccl", type=str, help="distributed backend"
)
parser.add_argument(
"--dist-url",
default=None,
type=str,
help="url used to set up distributed training",
)
parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
parser.add_argument(
"-d", "--devices", default=None, type=int, help="device for training"
)
parser.add_argument(
"--num_machines", default=1, type=int, help="num of node for training"
)
parser.add_argument(
"--machine_rank", default=0, type=int, help="node rank for multi-node training"
)
parser.add_argument(
"-f",
"--exp_file",
default=None,
type=str,
help="pls input your expriment description file",
)
parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
parser.add_argument("--conf", default=None, type=float, help="test conf")
parser.add_argument("--nms", default=None, type=float, help="test nms threshold")
parser.add_argument("--tsize", default=None, type=int, help="test img size")
parser.add_argument("--seed", default=None, type=int, help="eval seed")
parser.add_argument(
"--fp16",
dest="fp16",
default=False,
action="store_true",
help="Adopting mix precision evaluating.",
)
parser.add_argument(
"--fuse",
dest="fuse",
default=False,
action="store_true",
help="Fuse conv and bn for testing.",
)
parser.add_argument(
"--trt",
dest="trt",
default=False,
action="store_true",
help="Using TensorRT model for testing.",
)
parser.add_argument(
"--legacy",
dest="legacy",
default=False,
action="store_true",
help="To be compatible with older versions",
)
parser.add_argument(
"--test",
dest="test",
default=False,
action="store_true",
help="Evaluating on test-dev set.",
)
parser.add_argument(
"--speed",
dest="speed",
default=False,
action="store_true",
help="speed test only.",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
return parser
@logger.catch
def main(exp, args, num_gpu):
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn(
"You have chosen to seed testing. This will turn on the CUDNN deterministic setting, "
)
is_distributed = num_gpu > 1
# set environment variables for distributed training
configure_nccl()
cudnn.benchmark = True
rank = get_local_rank()
file_name = os.path.join(exp.output_dir, args.experiment_name)
if rank == 0:
os.makedirs(file_name, exist_ok=True)
setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a")
logger.info("Args: {}".format(args))
if args.conf is not None:
exp.test_conf = args.conf
if args.nms is not None:
exp.nmsthre = args.nms
if args.tsize is not None:
exp.test_size = (args.tsize, args.tsize)
model = exp.get_model()
logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
logger.info("Model Structure:\n{}".format(str(model)))
evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test, args.legacy)
torch.cuda.set_device(rank)
model.cuda(rank)
model.eval()
if not args.speed and not args.trt:
if args.ckpt is None:
ckpt_file = os.path.join(file_name, "best_ckpt.pth")
else:
ckpt_file = args.ckpt
logger.info("loading checkpoint from {}".format(ckpt_file))
loc = "cuda:{}".format(rank)
ckpt = torch.load(ckpt_file, map_location=loc)
model.load_state_dict(ckpt["model"])
logger.info("loaded checkpoint done.")
if is_distributed:
model = DDP(model, device_ids=[rank])
if args.fuse:
logger.info("\tFusing model...")
model = fuse_model(model)
if args.trt:
assert (
not args.fuse and not is_distributed and args.batch_size == 1
), "TensorRT model is not support model fusing and distributed inferencing!"
trt_file = os.path.join(file_name, "model_trt.pth")
assert os.path.exists(
trt_file
), "TensorRT model is not found!\n Run tools/trt.py first!"
model.head.decode_in_inference = False
decoder = model.head.decode_outputs
else:
trt_file = None
decoder = None
# start evaluate
*_, summary = evaluator.evaluate(
model, is_distributed, args.fp16, trt_file, decoder, exp.test_size
)
logger.info("\n" + summary)
if __name__ == "__main__":
args = make_parser().parse_args()
exp = get_exp(args.exp_file, args.name)
exp.merge(args.opts)
if not args.experiment_name:
args.experiment_name = exp.exp_name
num_gpu = torch.cuda.device_count() if args.devices is None else args.devices
assert num_gpu <= torch.cuda.device_count()
dist_url = "auto" if args.dist_url is None else args.dist_url
launch(
main,
num_gpu,
args.num_machines,
args.machine_rank,
backend=args.dist_backend,
dist_url=dist_url,
args=(exp, args, num_gpu),
)