You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
4. Lin Y, Liu Z, Luan H, et al. [Modeling relation paths for representation learning of knowledge bases](http://www.emnlp2015.org/proceedings/EMNLP/pdf/EMNLP082.pdf). EMNLP2015.
341
341
5. Gardner M, Talukdar P, Krishnamurthy J, et al. [Incorporating vector space similarity in random walk inference over knowledge bases](http://www.aclweb.org/anthology/D14-1044). EMNLP2014: 397-406.
342
342
6. Xiong W, Hoang T, Wang W Y. [DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning](http://www.aclweb.org/anthology/D17-1060). EMNLP2017:564-573.
343
+
7. Socher R , Chen D , Manning C D , et al. [Reasoning With Neural Tensor Networks for Knowledge Base Completion[C]](https://nlp.stanford.edu/pubs/SocherChenManningNg_NIPS2013.pdf)// International Conference on Neural Information Processing Systems. Curran Associates Inc. 2013.
344
+
8. Shi B , Weninger T . [ProjE: Embedding Projection for Knowledge Graph Completion[J]](https://arxiv.org/pdf/1611.05425.pdf). 2016.
345
+
9. Shi B , Weninger T . [Open-World Knowledge Graph Completion[J]](https://arxiv.org/pdf/1711.03438.pdf). 2017.
346
+
10. Schlichtkrull M , Kipf T N , Bloem P , et al. [Modeling Relational Data with Graph Convolutional Networks[J]](https://arxiv.org/pdf/1703.06103.pdf). 2017.
347
+
11. PTransE: Sun M , Zhu H , Xie R , et al. [Iterative Entity Alignment via Joint Knowledge Embeddings[C]](http://nlp.csai.tsinghua.edu.cn/~lzy/publications/ijcai2017_entity.pdf)// International Joint Conference on Artificial Intelligence. AAAI Press, 2017.
348
+
12. Das R , Neelakantan A , Belanger D , et al. [Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks[J]](https://arxiv.org/pdf/1607.01426.pdf). 2016.
349
+
13. Shen Y , Huang P S , Chang M W , et al. [Modeling Large-Scale Structured Relationships with Shared Memory for Knowledge Base Completion[J]](https://128.84.21.199/pdf/1611.04642v2.pdf). 2016.
350
+
14. Graves A , Wayne G , Reynolds M , et al. [Hybrid computing using a neural network with dynamic external memory[J]](https://www.nature.com/articles/nature20101.pdf). Nature.
351
+
15. Yang F , Yang Z , Cohen W W . [Differentiable Learning of Logical Rules for Knowledge Base Reasoning[J]](https://arxiv.org/pdf/1702.08367.pdf). 2017.
352
+
353
+
354
+
## 实体链接
355
+
1. Zhang W, Su J, Tan C L, et al.[ Entity linking leveraging: automatically generated annotation[C]](https://www.aclweb.org/anthology/C10-1145)// Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2010: 1290-1298.
356
+
2. Anastácio I, Martins B, Calado P. [Supervised learning for linking named entities to knowledge base entries[C]](https://tac.nist.gov//publications/2011/participant.papers/dmir_inescid.proceedings.pdf)// Proceedings of TAC. Gaithersburg: NIST, 2011: 1-12.
357
+
3. Francis-Landau M, Durrett G, Klein D. [Capturing semantic similarity for entity linking with convolutional neural networks[C]](https://arxiv.org/pdf/1604.00734.pdf)
358
+
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 1256-1261.
359
+
4. Sun Y, Lin L, Tang D, et al.[ Modeling mention, context and entity with neural networks for entity disambiguation](https://www.ijcai.org/Proceedings/15/Papers/192.pdf)// Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. California: IJCAI, 2015: 1333-1339.
360
+
5. Han X, Sun L, Zhao J. [Collective entity linking in web text: a graph-based method[C]](http://www.nlpr.ia.ac.cn/2011papers/gjhy/gh133.pdf)// Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 765-774.
361
+
6. Rao D, McNamee P, Dredze M. [Entity linking: Finding extracted entities in a knowledge base](http://www.cs.jhu.edu/~delip/entity_linking.pdf)// Multi-source, Multilingual Information Extraction and Summarization. Berlin: Springer, 2013:93-115.
362
+
7. Guo Z, Barbosa D. [Robust entity linking via random walks[C]](https://dl.acm.org/citation.cfm?id=2661887)//Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. New York:ACM Press, 2014: 499-508.
363
+
343
364
344
365
## 知识存储/知识查询
345
366
1. Bornea M A, Dolby J, Kementsietsidis A, et al. [Building an efficient RDF store over a relational database](https://www.researchgate.net/profile/Patrick_Dantressangle/publication/262162010_Building_an_efficient_RDF_store_over_a_relational_database/links/54f718680cf210398e9184bc/Building-an-efficient-RDF-store-over-a-relational-database.pdf). SIGMOD2013: 121-132.
346
367
2. Huang J, Abadi D J, Ren K. [Scalable SPARQL querying of large RDF graphs](http://www.cs.umd.edu/~abadi/papers/sw-graph-scale.pdf). Proceedings of the VLDB Endowment, 2011, 4(11): 1123-1134.
347
368
3. Zou L, Özsu M T, Chen L, et al. [gStore: a graph-based SPARQL query engine](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.7427&rep=rep1&type=pdf). The VLDB Journal—The International Journal on Very Large Data Bases, 2014, 23(4): 565-590.
348
-
369
+
4. Wilkinson K, Sayers C, Kuno H, et al. [Efficient RDF storage and retrieval in Jena2](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.3451&rep=rep1&type=pdf#page=137)[C]//Proceedings of the First International Conference on Semantic Web and Databases. CEUR-WS. org, 2003: 120-139.
370
+
2. Zou L, Mo J, Chen L, et al. [gStore: answering SPARQL queries via subgraph matching](http://www.vldb.org/pvldb/vol4/p482-zou.pdf)[J]. Proceedings of the VLDB Endowment, 2011, 4(8): 482-493.
371
+
3. Das S, Agrawal D, El Abbadi A. [G-store: a scalable data store for transactional multi key access in the cloud](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.209.1087&rep=rep1&type=pdf)[C]//Proceedings of the 1st ACM symposium on Cloud computing. ACM, 2010: 163-174.
372
+
4. Zou L, Özsu M T, Chen L, et al. [gStore: a graph-based SPARQL query engine](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.7427&rep=rep1&type=pdf)[J]. The VLDB Journal—The International Journal on Very Large Data Bases, 2014, 23(4): 565-590.
373
+
5. Ma L, Su Z, Pan Y, et al. [RStar: an RDF storage and query system for enterprise resource management](https://www.researchgate.net/profile/Zhong_Su/publication/221614612_RStar_An_RDF_storage_and_query_system_for_enterprise_resource_management/links/02e7e5181cc6d57b09000000/RStar-An-RDF-storage-and-query-system-for-enterprise-resource-management.pdf)[C]//Proceedings of the thirteenth ACM international conference on Information and knowledge management. ACM, 2004: 484-491.
374
+
6. Zeng K, Yang J, Wang H, et al. [A distributed graph engine for web scale RDF data](https://www.graphengine.io/downloads/papers/Trinity.RDF.pdf)[C]//Proceedings of the VLDB Endowment. VLDB Endowment, 2013, 6(4): 265-276.
375
+
7. Sakr S, Al-Naymat G. [Relational processing of RDF queries: a survey](https://sigmodrecord.org/publications/sigmodRecord/0912/p23.survey.sakr.pdf)[J]. ACM SIGMOD Record, 2010, 38(4): 23-28.
376
+
8. Harris S, Shadbolt N. [SPARQL query processing with conventional relational database systems](https://eprints.soton.ac.uk/261126/1/harris-ssws05.pdf)[C]//International Conference on Web Information Systems Engineering. Springer, Berlin, Heidelberg, 2005: 235-244.
377
+
9. Angles R. [A comparison of current graph database models](https://www.researchgate.net/profile/Renzo_Angles/publication/261076480_A_Comparison_of_Current_Graph_Database_Models/links/54f05b180cf25f74d72609c3.pdf)[C]//2012 IEEE 28th International Conference on Data Engineering Workshops. IEEE, 2012: 171-177.
378
+
10. Miller J J. [Graph database applications and concepts with Neo4j](https://pdfs.semanticscholar.org/322a/6e1f464330751dea2eb6beecac24466322ad.pdf)[C]//Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA. 2013, 2324(S 36).
379
+
11. Iordanov B. [HyperGraphDB: a generalized graph database](https://www.researchgate.net/profile/Borislav_Iordanov/publication/225204980_HyperGraphDB_A_Generalized_Graph_Database/links/0fcfd509bfc6de5b9a000000/HyperGraphDB-A-Generalized-Graph-Database.pdf)[C]//International conference on web-age information management. Springer, Berlin, Heidelberg, 2010: 25-36.
380
+
12. Sun J, Jin Q. [Scalable rdf store based on hbase and mapreduce](https://ieeexplore.ieee.org/abstract/document/5578937/)[C]//2010 3rd international conference on advanced computer theory and engineering (ICACTE). IEEE, 2010, 1: V1-633-V1-636.
381
+
13. Huang J, Abadi D J, Ren K. [Scalable SPARQL querying of large RDF graphs](http://www.cs.umd.edu/~abadi/papers/sw-graph-scale.pdf)[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 1123-1134.
382
+
14. Weiss C, Karras P, Bernstein A. [Hexastore: sextuple indexing for semantic web data management](http://people.csail.mit.edu/tdanford/6830papers/weiss-hexastore.pdf)[J]. Proceedings of the VLDB Endowment, 2008, 1(1): 1008-1019.
383
+
15. Neumann T, Weikum G. [The RDF-3X engine for scalable management of RDF data](https://pure.mpg.de/rest/items/item_1324253/component/file_1324252/content)[J]. The VLDB Journal—The International Journal on Very Large Data Bases, 2010, 19(1): 91-113.
384
+
349
385
## 人机交互
350
386
1. Ferrucci D A. [Introduction to “this is watson”](https://ieeexplore.ieee.org/abstract/document/6177724/). IBM Journal of Research and Development, 2012, 56(3.4): 1: 1-1: 15.
351
387
2. Lally A, Prager J M, McCord M C, et al. [Question analysis: How Watson reads a clue](http://www.patwardhans.net/papers/LallyEtAl12.pdf). IBM Journal of Research and Development, 2012, 56(3.4): 2: 1-2: 14.
67. He Z, Chen W, Li Z, et al. [SEE: Syntax-aware entity embedding for neural relation extraction](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16362/16142), AAAI2018.
447
483
68. Vashishth S , Joshi R , Prayaga S S , et al. [RESIDE: Improving Distantly-Supervised Neural Relation Extraction using Side Information](https://www.aclweb.org/anthology/D18-1157). ACL2018.
448
484
69. Tan Z, Zhao X, Wang W, et al. [Jointly Extracting Multiple Triplets with Multilayer Translation Constraints](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17151/16140). AAAI2018.
449
-
70. Ryuichi Takanobu, Tianyang Zhang, JieXi Liu, Minlie Huang[A Hierarchical Framework for Relation Extraction with Reinforcement Learning](https://arxiv.org/pdf/1811.03925.pdf), AAAI2019.
450
-
451
-
452
-
453
-
454
-
485
+
70. Ryuichi Takanobu, Tianyang Zhang, JieXi Liu, Minlie Huang[A Hierarchical Framework for Relation Extraction with Reinforcement Learning](https://arxiv.org/pdf/1811.03925.pdf), AAAI2019.
486
+
487
+
***---知识存储---**
488
+
71. Davoudian A, Chen L, Liu M. [A survey on NoSQL stores](https://dl.acm.org/citation.cfm?id=3158661)[J]. ACM Computing Surveys (CSUR), 2018, 51(2): 40.
489
+
72. Wylot M, Hauswirth M, Cudré-Mauroux P, et al. [RDF data storage and query processing schemes: A survey](https://exascale.info/assets/pdf/wylot2018survey.pdf)[J]. ACM Computing Surveys (CSUR), 2018, 51(4): 84.
490
+
73. Zeng L, Zou L. [Redesign of the gStore system](https://link.springer.com/article/10.1007/s11704-018-7212-z)[J]. Frontiers of Computer Science, 2018, 12(4): 623-641.
491
+
74. Zhang X, Zhang M, Peng P, et al. [ A Scalable Sparse Matrix-Based Join for SPARQL Query Processing](https://link.springer.com/chapter/10.1007/978-3-030-18590-9_77)[C]//International Conference on Database Systems for Advanced Applications. Springer, Cham, 2019: 510-514.
492
+
75. Libkin L, Reutter J L, Soto A, et al. [TriAL: A navigational algebra for RDF triplestores](http://www.research.ed.ac.uk/portal/files/44424184/tripalg_2.pdf)[J]. ACM Transactions on Database Systems (TODS), 2018, 43(1): 5.
493
+
76. Elzein N M, Majid M A, Hashem I A T, et al. [Managing big RDF data in clouds: Challenges, opportunities, and solutions](https://www.researchgate.net/profile/Ibrar_Yaqoob/publication/323377454_Managing_Big_RDF_Data_in_Clouds_Challenges_Opportunities_and_Solutions/links/5af126810f7e9ba366452ec6/Managing-Big-RDF-Data-in-Clouds-Challenges-Opportunities-and-Solutions.pdf)[J]. Sustainable Cities and Society, 2018, 39: 375-386.
494
+
495
+
***---知识推理---**
496
+
77. Lin, Xi Victoria, Richard Socher, and Caiming Xiong. [Multi-hop knowledge graph reasoning with reward shaping.](https://arxiv.org/pdf/1808.10568.pdf) arXiv preprint arXiv:1808.10568 (2018).
497
+
78. Zhang, Y., Dai, H., Kozareva, Z., Smola, A. J., & Song, L. (2018, April). [Variational reasoning for question answering with knowledge graph.]((https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16983/16176)) In Thirty-Second AAAI Conference on Artificial Intelligence.
498
+
79. Gu, L., Xia, Y., Yuan, X., Wang, C., & Jiao, J. (2018). [Research on the model for tobacco disease prevention and control based on case-based reasoning and knowledge graph.](http://journal.pmf.ni.ac.rs/filomat/index.php/filomat/article/download/6806/2760) Filomat, 32(5).
499
+
80. Zhang, Y., Dai, H., Kozareva, Z., Smola, A. J., & Song, L. (2018, April).[Variational reasoning for question answering with knowledge graph.](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16983/16176) In Thirty-Second AAAI Conference on Artificial Intelligence.
500
+
81. Trivedi, R., Dai, H., Wang, Y., & Song, L. (2017, August). [Know-evolve: Deep temporal reasoning for dynamic knowledge graphs.](https://arxiv.org/pdf/1705.05742) In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 3462-3471). JMLR. org.
501
+
82. Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., & Leskovec, J. (2018).[Embedding logical queries on knowledge graphs.](https://papers.nips.cc/paper/7473-embedding-logical-queries-on-knowledge-graphs.pdf) In Advances in Neural Information Processing Systems (pp. 2026-2037).
502
+
503
+
***---实体链接---**
504
+
83. Sil, A., Kundu, G., Florian, R., & Hamza, W. (2018, April). [Neural cross-lingual entity linking.](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPDFInterstitial/16501/16101) In Thirty-Second AAAI Conference on Artificial Intelligence.
505
+
84. Chen, H., Wei, B., Liu, Y., Li, Y., Yu, J., & Zhu, W. (2018). [Bilinear joint learning of word and entity embeddings for Entity Linking.](https://www.sciencedirect.com/science/article/pii/S0925231217318234) Neurocomputing, 294, 12-18.
506
+
85. Raiman, J. R., & Raiman, O. M. (2018, April). [DeepType: multilingual entity linking by neural type system evolution.](https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewPDFInterstitial/17148/16094) In Thirty-Second AAAI Conference on Artificial Intelligence.
507
+
86. Kundu, G., Sil, A., Florian, R., & Hamza, W. (2018). [Neural cross-lingual coreference resolution and its application to entity linking.](https://arxiv.org/pdf/1806.10201) arXiv preprint arXiv:1806.10201.
508
+
87. Kilias, T., Löser, A., Gers, F. A., Koopmanschap, R., Zhang, Y., & Kersten, M. (2018). [Idel: In-database entity linking with neural embeddings.](https://arxiv.org/pdf/1803.04884) arXiv preprint arXiv:1803.04884.
0 commit comments