forked from ZenGo-X/zk-paillier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrect_key_ni.rs
137 lines (119 loc) · 7.36 KB
/
correct_key_ni.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
/*
zk-paillier
Copyright 2018 by Kzen Networks
zk-paillier is free software: you can redistribute
it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.
@license GPL-3.0+ <https://github.com/KZen-networks/zk-paillier/blob/master/LICENSE>
*/
use std::iter;
use std::ops::Shl;
use curv::arithmetic::traits::*;
use curv::BigInt;
use paillier::{extract_nroot, DecryptionKey, EncryptionKey};
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
// This protocol is based on the NIZK protocol in https://eprint.iacr.org/2018/057.pdf
// for parameters = e = N, m2 = 11, alpha = 6370 see https://eprint.iacr.org/2018/987.pdf 6.2.3
// for full details.
// product of all primes < alpha
const P: &str = "44871651744009136248115543081640547413785854417842050160655833875792914833852769205831424979368719986889519256934239452438251108738670217298542180982547421007901019408155961940142468907900676141149633188172029947498666222471142795699128314649438784106402197023949268047384343715946006767671319388463922366703585708460135453240679421061304864609915827908896062350138633849514905858373339528086006145373712431756746905467935232935398951226852071323775412278763371089401544920873813490290672436809231516731065356763193493525160238868779310055137922174496115680527519932793977258424479253973670103634070028863591207614649216492780891961054287421831028229266989697058385612003557825398202548657910983931484180193293615175594925895929359108723671212631368891689462486968022029482413912928883488902454913524492340322599922718890878760895105937402913873414377276608236656947832307175090505396675623505955607363683869194683635689701238311577953994900734498406703176954324494694474545570839360607926610248093452739817614097197031607820417729009847465138388398887861935127785385309564525648905444610640901769290645369888935446477559073843982605496992468605588284307311971153579731703863970674466666844817336319390617551354845025116350295041840093627836067370100384861820888752358520276041000456608056339377573485917445104757987800101659688183150320442308091835974182809184299472568260682774683272697993855730500061223160274918361373258473553412704497335663924406111413972911417644029226449602417135116011968946232623154008710271296183350215563946003547561056456285939676838623311370087238225630994506113422922846572616538637723054222166159389475617214681282874373185283568512603887750846072033376432252677883915884203823739988948315257311383912016966925295975180180438969999175030785077627458887411146486902613291202008193902979800279637509789564807502239686755727063367075758492823731724669702442450502667810890608807091448688985203084972035197770874223259420649055450382725355162738490355628688943706634905982449810389530661328557381850782677221561924983234877936783136471890539395124220965982831778882400224156689487137227198030461624542872774217771594215907203725682315714199249588874271661233929713660269883273404764648327455796699366900022345171030564747210542398285078804310752063852249740561571105640741618793118627170070315410588646442647771802031066589341358879304845579387079972404386434238273904239604603511925708377008467129590636257287965232576327580009018475271364237665836186806027331208426256451429549641988386585949300254487647395222785274120561299318070944530096970076560461229486504018773252771360855091191876004370694539453020462096690084476681253865429278552786361828508910022714749051734108364178374765700925133405508684883070";
// salt string "kzen" as system parameter, which is hashed to 256 bit
pub const SALT_STRING: &[u8] = &[75, 90, 101, 110];
const M2: usize = 11;
const DIGEST_SIZE: usize = 256;
#[derive(Debug)]
pub struct CorrectKeyProofError;
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct NICorrectKeyProof {
#[serde(with = "crate::serialize::vecbigint")]
pub sigma_vec: Vec<BigInt>,
}
impl NICorrectKeyProof {
pub fn proof(dk: &DecryptionKey, salt_str: Option<&'static [u8]>) -> NICorrectKeyProof {
let dk_n = &dk.q * &dk.p;
let key_length = dk_n.bit_length();
let salt = match salt_str {
Some(salt) => salt,
None => SALT_STRING,
};
let salt_bn = super::compute_digest(iter::once(BigInt::from_bytes(salt)));
// TODO: use flatten (Morten?)
let rho_vec = (0..M2)
.map(|i| {
let seed_bn = super::compute_digest(
iter::once(&dk_n)
.chain(iter::once(&salt_bn))
.chain(iter::once(&BigInt::from(i as u32))),
);
// let seed_bn = BigInt::from(&seed[..]);
mask_generation(key_length, &seed_bn) % &dk_n
})
.collect::<Vec<BigInt>>();
let sigma_vec = rho_vec
.iter()
.map(|i| extract_nroot(dk, i))
.collect::<Vec<BigInt>>();
NICorrectKeyProof { sigma_vec }
}
pub fn verify(&self, ek: &EncryptionKey, salt_str: &[u8]) -> Result<(), CorrectKeyProofError> {
let key_length = ek.n.bit_length() as usize;
let salt_bn = super::compute_digest(iter::once(BigInt::from_bytes(salt_str)));
let rho_vec = (0..M2)
.map(|i| {
let seed_bn = super::compute_digest(
iter::once(&ek.n)
.chain(iter::once(&salt_bn))
.chain(iter::once(&BigInt::from(i as u32))),
);
mask_generation(key_length, &seed_bn) % &ek.n
})
.collect::<Vec<BigInt>>();
let alpha_primorial: BigInt = BigInt::from_str_radix(&P, 10).unwrap();
let gcd_test = alpha_primorial.gcd(&ek.n);
let derived_rho_vec = (0..M2)
.into_par_iter()
.map(|i| BigInt::mod_pow(&self.sigma_vec[i], &ek.n, &ek.n))
.collect::<Vec<BigInt>>();
if rho_vec == derived_rho_vec && gcd_test == BigInt::one() {
Ok(())
} else {
Err(CorrectKeyProofError)
}
}
}
// generate random element of size :
// based on https://tools.ietf.org/html/rfc8017#appendix-B.2.1
pub fn mask_generation(out_length: usize, seed: &BigInt) -> BigInt {
let msklen = out_length / DIGEST_SIZE + 1; // adding one sha256 is more efficient then rejection sampling (see A.4 (e) in the paper)
let msklen_hash_vec = (0..msklen)
.map(|j| {
super::compute_digest(iter::once(seed).chain(iter::once(&BigInt::from(j as u32))))
// concat elements of msklen_hash_vec to one long element
})
.collect::<Vec<BigInt>>();
msklen_hash_vec
.iter()
.zip(0..msklen)
.fold(BigInt::zero(), |acc, x| acc + x.0.shl(x.1 * DIGEST_SIZE))
}
#[cfg(test)]
mod tests {
use super::*;
use paillier::KeyGeneration;
use paillier::Paillier;
#[test]
fn test_correct_zk_proof_no_salt_str() {
let (ek, dk) = Paillier::keypair().keys();
let proof = NICorrectKeyProof::proof(&dk, None);
assert!(proof.verify(&ek, SALT_STRING).is_ok());
}
#[test]
fn test_correct_zk_proof_with_salt_str() {
let salt_str: &[u8] = &[90, 101, 110, 32, 71, 111, 32, 88];
let (ek, dk) = Paillier::keypair().keys();
let proof = NICorrectKeyProof::proof(&dk, Some(salt_str));
assert!(proof.verify(&ek, salt_str).is_ok());
}
}