forked from ZenGo-X/zk-paillier
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiplication_proof.rs
266 lines (236 loc) · 8.34 KB
/
multiplication_proof.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
use std::iter;
use curv::arithmetic::traits::*;
use curv::BigInt;
use paillier::EncryptWithChosenRandomness;
use paillier::Paillier;
use paillier::{EncryptionKey, Randomness, RawPlaintext};
use serde::{Deserialize, Serialize};
/// This proof is a non-interactive version of Multiplication-mod-n^s protocol taken from
/// DJ01 [https://www.brics.dk/RS/00/45/BRICS-RS-00-45.pdf ]
/// the prover knows 3 plaintexts a,b,c such that ab = c mod n. The prover goal is to prove that a
/// triplet of ciphertexts encrypts plaintexts a,b,c holding the multiplication relationship
/// Witness: {a,b,c,r_a,r_b,r_c}
/// Statement: {e_a, e_b, e_c, ek}
/// protocol:
/// 1) P picks random values d from Z_n, r_d from Z_n*
/// and computes e_d = Enc_ek(d,r_d), e_db = Enc_ek(db, r_d*r_b)
/// 2) using Fiat-Shamir the parties computes a challenge e
/// 3) P sends f = ea + d mod n , z1 = r_a^e *r_d mod n^2, z2 = r_b^f * (r_db * r_c^e)^-1 mod n^2
/// 4) V checks:
/// e_a^e * e_d = Enc_ek(f, z1),
/// e_b^f*(e_db*e_c^e)^-1 = Enc_pk(0, z2)
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct MulProof {
pub f: BigInt,
pub z1: BigInt,
pub z2: BigInt,
pub e_d: BigInt,
pub e_db: BigInt,
}
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct MulWitness {
pub a: BigInt,
pub b: BigInt,
pub c: BigInt,
pub r_a: BigInt,
pub r_b: BigInt,
pub r_c: BigInt,
}
#[derive(Clone, PartialEq, Debug, Serialize, Deserialize)]
pub struct MulStatement {
pub ek: EncryptionKey,
pub e_a: BigInt,
pub e_b: BigInt,
pub e_c: BigInt,
}
impl MulProof {
pub fn prove(witness: &MulWitness, statement: &MulStatement) -> Result<Self, ()> {
let d = BigInt::sample_below(&statement.ek.n);
let r_d = sample_paillier_random(&statement.ek.n);
let e_d = Paillier::encrypt_with_chosen_randomness(
&statement.ek,
RawPlaintext::from(d.clone()),
&Randomness(r_d.clone()),
)
.0
.into_owned();
let r_db = &r_d * &witness.r_b;
let db = &d * &witness.b;
let e_db = Paillier::encrypt_with_chosen_randomness(
&statement.ek,
RawPlaintext::from(db.clone()),
&Randomness(r_db.clone()),
)
.0
.into_owned();
let e = super::compute_digest(
iter::once(&statement.ek.n)
.chain(iter::once(&statement.e_a))
.chain(iter::once(&statement.e_b))
.chain(iter::once(&statement.e_c))
.chain(iter::once(&e_d))
.chain(iter::once(&e_db)),
);
let ea = BigInt::mod_mul(&e, &witness.a, &statement.ek.n);
let f = BigInt::mod_add(&ea, &d, &statement.ek.n);
let r_a_e = BigInt::mod_pow(&witness.r_a, &e, &statement.ek.nn);
let z1 = BigInt::mod_mul(&r_a_e, &r_d, &statement.ek.nn);
let r_b_f = BigInt::mod_pow(&witness.r_b, &f, &statement.ek.nn);
let r_c_e = BigInt::mod_pow(&witness.r_c, &e, &statement.ek.nn);
let r_db_r_c_e = BigInt::mod_mul(&r_db, &r_c_e, &statement.ek.nn);
let r_db_r_c_e_inv = BigInt::mod_inv(&r_db_r_c_e, &statement.ek.nn).unwrap();
let z2 = BigInt::mod_mul(&r_b_f, &r_db_r_c_e_inv, &statement.ek.nn);
Ok(MulProof {
f,
z1,
z2,
e_d,
e_db,
})
}
pub fn verify(&self, statement: &MulStatement) -> Result<(), ()> {
let e = super::compute_digest(
iter::once(&statement.ek.n)
.chain(iter::once(&statement.e_a))
.chain(iter::once(&statement.e_b))
.chain(iter::once(&statement.e_c))
.chain(iter::once(&self.e_d))
.chain(iter::once(&self.e_db)),
);
let enc_f_z1 = Paillier::encrypt_with_chosen_randomness(
&statement.ek,
RawPlaintext::from(self.f.clone()),
&Randomness(self.z1.clone()),
)
.0
.into_owned();
let enc_0_z2 = Paillier::encrypt_with_chosen_randomness(
&statement.ek,
RawPlaintext::from(BigInt::zero()),
&Randomness(self.z2.clone()),
)
.0
.into_owned();
let e_a_e = BigInt::mod_pow(&statement.e_a, &e, &statement.ek.nn);
let e_a_e_e_d = BigInt::mod_mul(&e_a_e, &self.e_d, &statement.ek.nn);
let e_c_e = BigInt::mod_pow(&statement.e_c, &e, &statement.ek.nn);
let e_db_e_c_e = BigInt::mod_mul(&self.e_db, &e_c_e, &statement.ek.nn);
let e_db_e_c_e_inv = BigInt::mod_inv(&e_db_e_c_e, &statement.ek.nn).unwrap();
let e_b_f = BigInt::mod_pow(&statement.e_b, &self.f, &statement.ek.nn);
let e_b_f_e_db_e_c_e_inv = BigInt::mod_mul(&e_b_f, &e_db_e_c_e_inv, &statement.ek.nn);
match e_a_e_e_d == enc_f_z1 && e_b_f_e_db_e_c_e_inv == enc_0_z2 {
true => Ok(()),
false => Err(()),
}
}
}
fn sample_paillier_random(modulo: &BigInt) -> BigInt {
let mut r_a = BigInt::sample_below(modulo);
while BigInt::gcd(&r_a, modulo) != BigInt::one() {
r_a = BigInt::sample_below(modulo);
}
r_a
}
#[cfg(test)]
mod tests {
use curv::arithmetic::traits::*;
use curv::BigInt;
use paillier::core::Randomness;
use paillier::traits::EncryptWithChosenRandomness;
use paillier::traits::KeyGeneration;
use paillier::Paillier;
use paillier::RawPlaintext;
use crate::zkproofs::multiplication_proof::sample_paillier_random;
use crate::zkproofs::multiplication_proof::MulProof;
use crate::zkproofs::multiplication_proof::MulStatement;
use crate::zkproofs::multiplication_proof::MulWitness;
#[test]
fn test_mul_proof() {
let (ek, _) = Paillier::keypair().keys();
let a = BigInt::sample_below(&ek.n);
let b = BigInt::sample_below(&ek.n);
let c = BigInt::mod_mul(&a, &b, &ek.n);
let r_a = sample_paillier_random(&ek.n);
let r_b = sample_paillier_random(&ek.n);
let r_c = sample_paillier_random(&ek.n);
let e_a = Paillier::encrypt_with_chosen_randomness(
&ek,
RawPlaintext::from(a.clone()),
&Randomness(r_a.clone()),
)
.0
.into_owned();
let e_b = Paillier::encrypt_with_chosen_randomness(
&ek,
RawPlaintext::from(b.clone()),
&Randomness(r_b.clone()),
)
.0
.into_owned();
let e_c = Paillier::encrypt_with_chosen_randomness(
&ek,
RawPlaintext::from(c.clone()),
&Randomness(r_c.clone()),
)
.0
.into_owned();
let witness = MulWitness {
a,
b,
c,
r_a,
r_b,
r_c,
};
let statement = MulStatement { ek, e_a, e_b, e_c };
let proof = MulProof::prove(&witness, &statement).unwrap();
let verify = proof.verify(&statement);
assert!(verify.is_ok());
}
#[test]
#[should_panic]
fn test_bad_mul_proof() {
let (ek, _) = Paillier::keypair().keys();
let a = BigInt::sample_below(&ek.n);
let b = BigInt::sample_below(&ek.n);
let mut c = BigInt::mod_mul(&a, &b, &ek.n);
// we change c such that c != ab mod m
c = &c + BigInt::one();
let r_a = sample_paillier_random(&ek.n);
let r_b = sample_paillier_random(&ek.n);
let r_c = sample_paillier_random(&ek.n);
let e_a = Paillier::encrypt_with_chosen_randomness(
&ek,
RawPlaintext::from(a.clone()),
&Randomness(r_a.clone()),
)
.0
.into_owned();
let e_b = Paillier::encrypt_with_chosen_randomness(
&ek,
RawPlaintext::from(b.clone()),
&Randomness(r_b.clone()),
)
.0
.into_owned();
let e_c = Paillier::encrypt_with_chosen_randomness(
&ek,
RawPlaintext::from(c.clone()),
&Randomness(r_c.clone()),
)
.0
.into_owned();
let witness = MulWitness {
a,
b,
c,
r_a,
r_b,
r_c,
};
let statement = MulStatement { ek, e_a, e_b, e_c };
let proof = MulProof::prove(&witness, &statement).unwrap();
let verify = proof.verify(&statement);
assert!(verify.is_ok());
}
}