-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunet_parts.py
77 lines (61 loc) · 2.31 KB
/
unet_parts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import torch.nn as nn
from torchvision.transforms import CenterCrop
class conv_block(nn.Module):
def __init__(self, insize, outsize):
super().__init__()
self.conv_block = nn.Sequential(
nn.Conv2d(insize, outsize, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(outsize, outsize, kernel_size=3, padding=1),
nn.ReLU()
)
def forward(self, x):
return self.conv_block(x)
class Encoder(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = conv_block(3, 32)
self.conv2 = conv_block(32, 64)
self.conv3 = conv_block(64, 128)
self.conv4 = conv_block(128, 256)
self.maxpool = nn.MaxPool2d(2, 2)
def forward(self, x):
conv1 = self.conv1(x)
pool1 = self.maxpool(conv1)
conv2 = self.conv2(pool1)
pool2 = self.maxpool(conv2)
conv3 = self.conv3(pool2)
pool3 = self.maxpool(conv3)
conv4 = self.conv4(pool3)
out = self.maxpool(conv4)
return out, conv4, conv3, conv2, conv1
class Decoder(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = conv_block(512, 256)
self.conv2 = conv_block(256, 128)
self.conv3 = conv_block(128, 64)
self.conv4 = conv_block(64, 32)
self.deconv1 = nn.ConvTranspose2d(512, 256, 2, 2)
self.deconv2 = nn.ConvTranspose2d(256, 128, 2, 2)
self.deconv3 = nn.ConvTranspose2d(128, 64, 2, 2)
self.deconv4 = nn.ConvTranspose2d(64, 32, 2, 2)
def forward(self, x, conv1, conv2, conv3, conv4):
out = self.deconv1(x)
conv1 = CenterCrop((out.shape[2], out.shape[3]))(conv1)
out = torch.cat((conv1, out), dim = 1)
out = self.conv1(out)
out = self.deconv2(out)
conv2 = CenterCrop((out.shape[2], out.shape[3]))(conv2)
out = torch.cat((conv2, out), dim = 1)
out = self.conv2(out)
out = self.deconv3(out)
conv3 = CenterCrop((out.shape[2], out.shape[3]))(conv3)
out = torch.cat((conv3, out), dim = 1)
out = self.conv3(out)
out = self.deconv4(out)
conv4 = CenterCrop((out.shape[2], out.shape[3]))(conv4)
out = torch.cat((conv4, out), dim = 1)
out = self.conv4(out)
return out