forked from satijalab/seurat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDotPlot.Rd
91 lines (75 loc) · 2.69 KB
/
DotPlot.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/visualization.R
\name{DotPlot}
\alias{DotPlot}
\alias{SplitDotPlotGG}
\title{Dot plot visualization}
\usage{
DotPlot(
object,
assay = NULL,
features,
cols = c("lightgrey", "blue"),
col.min = -2.5,
col.max = 2.5,
dot.min = 0,
dot.scale = 6,
idents = NULL,
group.by = NULL,
split.by = NULL,
cluster.idents = FALSE,
scale = TRUE,
scale.by = "radius",
scale.min = NA,
scale.max = NA
)
}
\arguments{
\item{object}{Seurat object}
\item{assay}{Name of assay to use, defaults to the active assay}
\item{features}{Input vector of features, or named list of feature vectors
if feature-grouped panels are desired (replicates the functionality of the
old SplitDotPlotGG)}
\item{cols}{Colors to plot: the name of a palette from
\code{RColorBrewer::brewer.pal.info}, a pair of colors defining a gradient,
or 3+ colors defining multiple gradients (if split.by is set)}
\item{col.min}{Minimum scaled average expression threshold (everything
smaller will be set to this)}
\item{col.max}{Maximum scaled average expression threshold (everything larger
will be set to this)}
\item{dot.min}{The fraction of cells at which to draw the smallest dot
(default is 0). All cell groups with less than this expressing the given
gene will have no dot drawn.}
\item{dot.scale}{Scale the size of the points, similar to cex}
\item{idents}{Identity classes to include in plot (default is all)}
\item{group.by}{Factor to group the cells by}
\item{split.by}{Factor to split the groups by (replicates the functionality
of the old SplitDotPlotGG);
see \code{\link{FetchData}} for more details}
\item{cluster.idents}{Whether to order identities by hierarchical clusters
based on given features, default is FALSE}
\item{scale}{Determine whether the data is scaled, TRUE for default}
\item{scale.by}{Scale the size of the points by 'size' or by 'radius'}
\item{scale.min}{Set lower limit for scaling, use NA for default}
\item{scale.max}{Set upper limit for scaling, use NA for default}
}
\value{
A ggplot object
}
\description{
Intuitive way of visualizing how feature expression changes across different
identity classes (clusters). The size of the dot encodes the percentage of
cells within a class, while the color encodes the AverageExpression level
across all cells within a class (blue is high).
}
\examples{
data("pbmc_small")
cd_genes <- c("CD247", "CD3E", "CD9")
DotPlot(object = pbmc_small, features = cd_genes)
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
DotPlot(object = pbmc_small, features = cd_genes, split.by = 'groups')
}
\seealso{
\code{RColorBrewer::brewer.pal.info}
}
\concept{visualization}