forked from konrad-gajdus/miniMNIST-c
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.c
222 lines (178 loc) · 6.97 KB
/
nn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define INPUT_SIZE 784
#define HIDDEN_SIZE 256
#define OUTPUT_SIZE 10
#define LEARNING_RATE 0.001f
#define EPOCHS 20
#define BATCH_SIZE 64
#define IMAGE_SIZE 28
#define TRAIN_SPLIT 0.8
#define TRAIN_IMG_PATH "data/train-images.idx3-ubyte"
#define TRAIN_LBL_PATH "data/train-labels.idx1-ubyte"
typedef struct {
float *weights, *biases;
int input_size, output_size;
} Layer;
typedef struct {
Layer hidden, output;
} Network;
typedef struct {
unsigned char *images, *labels;
int nImages;
} InputData;
void softmax(float *input, int size) {
float max = input[0], sum = 0;
for (int i = 1; i < size; i++)
if (input[i] > max) max = input[i];
for (int i = 0; i < size; i++) {
input[i] = expf(input[i] - max);
sum += input[i];
}
for (int i = 0; i < size; i++)
input[i] /= sum;
}
void init_layer(Layer *layer, int in_size, int out_size) {
int n = in_size * out_size;
float scale = sqrtf(2.0f / in_size);
layer->input_size = in_size;
layer->output_size = out_size;
layer->weights = malloc(n * sizeof(float));
layer->biases = calloc(out_size, sizeof(float));
for (int i = 0; i < n; i++)
layer->weights[i] = ((float)rand() / RAND_MAX - 0.5f) * 2 * scale;
}
void forward(Layer *layer, float *input, float *output) {
for (int i = 0; i < layer->output_size; i++) {
output[i] = layer->biases[i];
for (int j = 0; j < layer->input_size; j++)
output[i] += input[j] * layer->weights[j * layer->output_size + i];
}
}
void backward(Layer *layer, float *input, float *output_grad, float *input_grad, float lr) {
for (int i = 0; i < layer->output_size; i++) {
for (int j = 0; j < layer->input_size; j++) {
int idx = j * layer->output_size + i;
float grad = output_grad[i] * input[j];
layer->weights[idx] -= lr * grad;
if (input_grad)
input_grad[j] += output_grad[i] * layer->weights[idx];
}
layer->biases[i] -= lr * output_grad[i];
}
}
void train(Network *net, float *input, int label, float lr) {
float hidden_output[HIDDEN_SIZE], final_output[OUTPUT_SIZE];
float output_grad[OUTPUT_SIZE] = {0}, hidden_grad[HIDDEN_SIZE] = {0};
forward(&net->hidden, input, hidden_output);
for (int i = 0; i < HIDDEN_SIZE; i++)
hidden_output[i] = hidden_output[i] > 0 ? hidden_output[i] : 0; // ReLU
forward(&net->output, hidden_output, final_output);
softmax(final_output, OUTPUT_SIZE);
for (int i = 0; i < OUTPUT_SIZE; i++)
output_grad[i] = final_output[i] - (i == label);
backward(&net->output, hidden_output, output_grad, hidden_grad, lr);
for (int i = 0; i < HIDDEN_SIZE; i++)
hidden_grad[i] *= hidden_output[i] > 0 ? 1 : 0; // ReLU derivative
backward(&net->hidden, input, hidden_grad, NULL, lr);
}
int predict(Network *net, float *input) {
float hidden_output[HIDDEN_SIZE], final_output[OUTPUT_SIZE];
forward(&net->hidden, input, hidden_output);
for (int i = 0; i < HIDDEN_SIZE; i++)
hidden_output[i] = hidden_output[i] > 0 ? hidden_output[i] : 0; // ReLU
forward(&net->output, hidden_output, final_output);
softmax(final_output, OUTPUT_SIZE);
int max_index = 0;
for (int i = 1; i < OUTPUT_SIZE; i++)
if (final_output[i] > final_output[max_index])
max_index = i;
return max_index;
}
void read_mnist_images(const char *filename, unsigned char **images, int *nImages) {
FILE *file = fopen(filename, "rb");
if (!file) exit(1);
int temp, rows, cols;
fread(&temp, sizeof(int), 1, file);
fread(nImages, sizeof(int), 1, file);
*nImages = __builtin_bswap32(*nImages);
fread(&rows, sizeof(int), 1, file);
fread(&cols, sizeof(int), 1, file);
rows = __builtin_bswap32(rows);
cols = __builtin_bswap32(cols);
*images = malloc((*nImages) * IMAGE_SIZE * IMAGE_SIZE);
fread(*images, sizeof(unsigned char), (*nImages) * IMAGE_SIZE * IMAGE_SIZE, file);
fclose(file);
}
void read_mnist_labels(const char *filename, unsigned char **labels, int *nLabels) {
FILE *file = fopen(filename, "rb");
if (!file) exit(1);
int temp;
fread(&temp, sizeof(int), 1, file);
fread(nLabels, sizeof(int), 1, file);
*nLabels = __builtin_bswap32(*nLabels);
*labels = malloc(*nLabels);
fread(*labels, sizeof(unsigned char), *nLabels, file);
fclose(file);
}
void shuffle_data(unsigned char *images, unsigned char *labels, int n) {
for (int i = n - 1; i > 0; i--) {
int j = rand() % (i + 1);
for (int k = 0; k < INPUT_SIZE; k++) {
unsigned char temp = images[i * INPUT_SIZE + k];
images[i * INPUT_SIZE + k] = images[j * INPUT_SIZE + k];
images[j * INPUT_SIZE + k] = temp;
}
unsigned char temp = labels[i];
labels[i] = labels[j];
labels[j] = temp;
}
}
int main() {
Network net;
InputData data = {0};
float learning_rate = LEARNING_RATE, img[INPUT_SIZE];
srand(time(NULL));
init_layer(&net.hidden, INPUT_SIZE, HIDDEN_SIZE);
init_layer(&net.output, HIDDEN_SIZE, OUTPUT_SIZE);
read_mnist_images(TRAIN_IMG_PATH, &data.images, &data.nImages);
read_mnist_labels(TRAIN_LBL_PATH, &data.labels, &data.nImages);
shuffle_data(data.images, data.labels, data.nImages);
int train_size = (int)(data.nImages * TRAIN_SPLIT);
int test_size = data.nImages - train_size;
for (int epoch = 0; epoch < EPOCHS; epoch++) {
float total_loss = 0;
for (int i = 0; i < train_size; i += BATCH_SIZE) {
for (int j = 0; j < BATCH_SIZE && i + j < train_size; j++) {
int idx = i + j;
for (int k = 0; k < INPUT_SIZE; k++)
img[k] = data.images[idx * INPUT_SIZE + k] / 255.0f;
train(&net, img, data.labels[idx], learning_rate);
float hidden_output[HIDDEN_SIZE], final_output[OUTPUT_SIZE];
forward(&net.hidden, img, hidden_output);
for (int k = 0; k < HIDDEN_SIZE; k++)
hidden_output[k] = hidden_output[k] > 0 ? hidden_output[k] : 0; // ReLU
forward(&net.output, hidden_output, final_output);
softmax(final_output, OUTPUT_SIZE);
total_loss += -logf(final_output[data.labels[idx]] + 1e-10f);
}
}
int correct = 0;
for (int i = train_size; i < data.nImages; i++) {
for (int k = 0; k < INPUT_SIZE; k++)
img[k] = data.images[i * INPUT_SIZE + k] / 255.0f;
if (predict(&net, img) == data.labels[i])
correct++;
}
printf("Epoch %d, Accuracy: %.2f%%, Avg Loss: %.4f\n", epoch + 1, (float)correct / test_size * 100, total_loss / train_size);
}
free(net.hidden.weights);
free(net.hidden.biases);
free(net.output.weights);
free(net.output.biases);
free(data.images);
free(data.labels);
return 0;
}