forked from magnetometer/iss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
15orb-cp.nb
9053 lines (8978 loc) · 520 KB
/
15orb-cp.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 523298, 9044]
NotebookOptionsPosition[ 520791, 8961]
NotebookOutlinePosition[ 521135, 8976]
CellTagsIndexPosition[ 521092, 8973]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"c\[AAcute]lculo", " ", "da", " ", "distancia", " ", "ao", " ", "centro",
" ", "da", " ", "terra", " ", "a", " ", "partir", " ", "da", " ",
"altitude"}], "*)"}]], "Input",
CellChangeTimes->{{3.832512218908696*^9, 3.832512240995818*^9}, {
3.8325123355656853`*^9, 3.8325123357127724`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"a", "=", "6.378137"}], ";"}]], "Input",
CellChangeTimes->{{3.831036772455683*^9, 3.831036794496992*^9},
3.831141564841033*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"b", "=", "6.356752314245"}], ";"}]], "Input",
CellChangeTimes->{{3.831036797948179*^9, 3.831036819443083*^9}, {
3.8310374315431366`*^9, 3.83103743849581*^9}, {3.831141569490961*^9,
3.8311415729530535`*^9}, {3.849236164448139*^9, 3.8492361667521305`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"s", "[", "la_", "]"}], ":=",
RowBox[{
RowBox[{"a", "^", "2"}], "/",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"a", "^", "2"}], "*",
RowBox[{
RowBox[{"Cos", "[", "la", "]"}], "^", "2"}]}], "+",
RowBox[{
RowBox[{"b", "^", "2"}], "*",
RowBox[{
RowBox[{"Sin", "[", "la", "]"}], "^", "2"}]}]}], "]"}]}]}]], "Input",
CellChangeTimes->{{3.8492361784194913`*^9, 3.84923619340477*^9},
3.8492364746860547`*^9}],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"leitura", " ", "de", " ", "momentos", " ", "multipolares", " ", "do", " ",
"excel"}], "*)"}]], "Input",
CellChangeTimes->{{3.8325132692711987`*^9, 3.8325132857646217`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"mg", "=",
RowBox[{
"Import", "[",
"\"\<C:\\\\Users\\\\Utilizador\\\\Documents\\\\astropi\\\\wmg15.csv\>\"",
"]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.8464971439655085`*^9, 3.846497149753479*^9},
3.8466138235580077`*^9, {3.84923695829891*^9, 3.849236958627418*^9}, {
3.8497112727210436`*^9, 3.849711273440626*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"mh", "=",
RowBox[{
"Import", "[",
"\"\<C:\\\\Users\\\\Utilizador\\\\Documents\\\\astropi\\\\wmh15.csv\>\"",
"]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.8464971577099514`*^9, 3.8464971710199537`*^9},
3.846613832344533*^9, {3.8492369633203793`*^9, 3.849236963695292*^9}, {
3.8497112757766027`*^9, 3.849711276437647*^9}}],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"construcao", " ", "das", " ", "matrizes", " ", "dos", " ", "momentos", " ",
"multipolares"}], "*)"}]], "Input",
CellChangeTimes->{{3.8325133730586214`*^9, 3.8325133943426957`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"h", "=",
RowBox[{"Table", "[",
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"i", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "14"}], "}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{3.8466139229180174`*^9}],
Cell[BoxData[
RowBox[{
RowBox[{"g", "=",
RowBox[{"Table", "[",
RowBox[{"0", ",",
RowBox[{"{",
RowBox[{"i", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "14"}], "}"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{3.8466139263687053`*^9}],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"g", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}], "=",
RowBox[{
RowBox[{"mg", "[",
RowBox[{"[",
RowBox[{
RowBox[{"i", "*",
RowBox[{
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}], "/", "2"}]}], "-", "1", "+", "j"}],
"]"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"i", "+", "1"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.84661393049084*^9, 3.846613934670913*^9}}],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"h", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}], "=",
RowBox[{
RowBox[{"mh", "[",
RowBox[{"[",
RowBox[{
RowBox[{"i", "*",
RowBox[{
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}], "/", "2"}]}], "-", "1", "+", "j"}],
"]"}], "]"}], "[",
RowBox[{"[", "1", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"i", "+", "1"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{3.846613939011941*^9}],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"raio", " ", "da", " ", "terra", " ", "no", " ", "modelo", " ",
"multipolar", " ", "e", " ", "ordem", " ", "da", " ", "expansao"}],
"*)"}]], "Input",
CellChangeTimes->{{3.8325134753752337`*^9, 3.8325135203803625`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"rt", "=", "6.3712"}], ";"}]], "Input",
CellChangeTimes->{{3.8325135306871996`*^9, 3.8325135430905714`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"n", "=", "3"}], ";"}]], "Input",
CellChangeTimes->{{3.832513562755727*^9, 3.832513563158495*^9},
3.8466139491463757`*^9}],
Cell[BoxData[
RowBox[{"(*",
RowBox[{"campo", " ", "no", " ", "modelo", " ", "multipolar"}],
"*)"}]], "Input",
CellChangeTimes->{{3.8325135839531937`*^9, 3.832513594655861*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"V", "[",
RowBox[{"r_", ",", "la_", ",", "lo_"}], "]"}], ":=",
RowBox[{"rt", "*",
RowBox[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"rt", "/", "r"}], ")"}], "^",
RowBox[{"(",
RowBox[{"i", "+", "1"}], ")"}]}], "*",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"g", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}], "*",
RowBox[{"Cos", "[",
RowBox[{
RowBox[{"(",
RowBox[{"j", "-", "1"}], ")"}], "*", "lo"}], "]"}]}], "+",
RowBox[{
RowBox[{"h", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}], "*",
RowBox[{"Sin", "[",
RowBox[{
RowBox[{"(",
RowBox[{"j", "-", "1"}], ")"}], "*", "lo"}], "]"}]}]}], ")"}],
"*",
RowBox[{"LegendreP", "[",
RowBox[{"i", ",",
RowBox[{"j", "-", "1"}], ",",
RowBox[{"Sin", "[", "la", "]"}]}], "]"}], "*",
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"(",
RowBox[{"j", "-", "1"}], ")"}]}], "*",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"KroneckerDelta", "[",
RowBox[{"j", ",", "1"}], "]"}]}], ")"}], "*",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"i", "-", "j", "+", "1"}], ")"}], "!"}], "/",
RowBox[{
RowBox[{"(",
RowBox[{"i", "+", "j", "-", "1"}], ")"}], "!"}]}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "n"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"i", "+", "1"}]}], "}"}]}], "]"}], "/", "1000"}]}]}]], "Input",
CellChangeTimes->{{3.8325136021568947`*^9, 3.832513607538638*^9}, {
3.832517664384759*^9, 3.8325176657267523`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"dvr", "[",
RowBox[{"r_", ",", "la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[",
RowBox[{"x", ",", "la", ",", "lo"}], "]"}], ",", "x"}], "]"}], "/.",
RowBox[{"x", "\[Rule]", "r"}]}]}]], "Input"],
Cell[BoxData[
RowBox[{
RowBox[{"dvla", "[",
RowBox[{"r_", ",", "la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[",
RowBox[{"r", ",", "x", ",", "lo"}], "]"}], ",", "x"}], "]"}], "/",
"r"}], "/.",
RowBox[{"x", "\[Rule]", "la"}]}]}]], "Input"],
Cell[BoxData[
RowBox[{
RowBox[{"dvlo", "[",
RowBox[{"r_", ",", "la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{
RowBox[{"V", "[",
RowBox[{"r", ",", "la", ",", "x"}], "]"}], ",", "x"}], "]"}], "/",
"r"}], "/",
RowBox[{"Cos", "[", "la", "]"}]}], "/.",
RowBox[{"x", "\[Rule]", "lo"}]}]}]], "Input"],
Cell[BoxData[
RowBox[{
RowBox[{"Bx", "[",
RowBox[{"la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[", "la", "]"}]}], "*",
RowBox[{"dvr", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}], "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "la", "]"}], "*",
RowBox[{"dvla", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}], "]"}]}]}],
")"}], "*",
RowBox[{"Cos", "[", "lo", "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "lo", "]"}], "*",
RowBox[{"dvlo", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}],
"]"}]}]}]}]], "Input",
CellChangeTimes->{{3.8492362631742783`*^9, 3.849236317534801*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"By", "[",
RowBox[{"la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Cos", "[", "la", "]"}]}], "*",
RowBox[{"dvr", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}], "]"}]}], "+",
RowBox[{
RowBox[{"Sin", "[", "la", "]"}], "*",
RowBox[{"dvla", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}], "]"}]}]}],
")"}], "*",
RowBox[{"Sin", "[", "lo", "]"}]}], "-",
RowBox[{
RowBox[{"Cos", "[", "lo", "]"}], "*",
RowBox[{"dvlo", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}],
"]"}]}]}]}]], "Input",
CellChangeTimes->{{3.849236279815563*^9, 3.8492363216192317`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Bz", "[",
RowBox[{"la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"Sin", "[", "la", "]"}]}], "*",
RowBox[{"dvr", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}], "]"}]}], "-",
RowBox[{
RowBox[{"Cos", "[", "la", "]"}], "*",
RowBox[{"dvla", "[",
RowBox[{
RowBox[{"s", "[", "la", "]"}], ",", "la", ",", "lo"}],
"]"}]}]}]}]], "Input",
CellChangeTimes->{{3.8492362828684382`*^9, 3.849236324524329*^9}}],
Cell[BoxData[
RowBox[{"(*",
RowBox[{
"modulo", " ", "do", " ", "campo", " ", "no", " ", "modelo", " ",
"multipolar"}], "*)"}]], "Input",
CellChangeTimes->{{3.832513712500684*^9, 3.83251372875889*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"B", "[",
RowBox[{"la_", ",", "lo_"}], "]"}], ":=",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"Bx", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"By", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"Bz", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.849236331756243*^9, 3.849236342220906*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Bminsul", "[",
RowBox[{"la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"Bx", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"By", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"Bz", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}]}], "]"}], "-",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Bx", "[",
RowBox[{"la", ",", "lo"}], "]"}], "*",
RowBox[{"Cos", "[", "la", "]"}], "*",
RowBox[{"Cos", "[", "lo", "]"}]}], "+",
RowBox[{
RowBox[{"By", "[",
RowBox[{"la", ",", "lo"}], "]"}], "*",
RowBox[{"Cos", "[", "la", "]"}], "*",
RowBox[{"Sin", "[", "lo", "]"}]}], "+",
RowBox[{
RowBox[{"Bz", "[",
RowBox[{"la", ",", "lo"}], "]"}], "*",
RowBox[{"Sin", "[", "la", "]"}]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.8466332415172796`*^9, 3.846633373097411*^9}, {
3.849236346282442*^9, 3.849236376145443*^9}, {3.8492717491735163`*^9,
3.84927174963717*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Bminnor", "[",
RowBox[{"la_", ",", "lo_"}], "]"}], ":=",
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"Bx", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"By", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}], "+",
RowBox[{
RowBox[{"Bz", "[",
RowBox[{"la", ",", "lo"}], "]"}], "^", "2"}]}], "]"}], "+",
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"Bx", "[",
RowBox[{"la", ",", "lo"}], "]"}], "*",
RowBox[{"Cos", "[", "la", "]"}], "*",
RowBox[{"Cos", "[", "lo", "]"}]}], "+",
RowBox[{
RowBox[{"By", "[",
RowBox[{"la", ",", "lo"}], "]"}], "*",
RowBox[{"Cos", "[", "la", "]"}], "*",
RowBox[{"Sin", "[", "lo", "]"}]}], "+",
RowBox[{
RowBox[{"Bz", "[",
RowBox[{"la", ",", "lo"}], "]"}], "*",
RowBox[{"Sin", "[", "la", "]"}]}]}], ")"}]}]}]], "Input",
CellChangeTimes->{{3.846634737649725*^9, 3.8466347445989237`*^9}, {
3.8492363801053343`*^9, 3.8492363979090056`*^9}, {3.8492717573569183`*^9,
3.8492717582442784`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NMinimize", "[",
RowBox[{
RowBox[{"Bminsul", "[",
RowBox[{"la1", ",", "lo1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"la1", ",", "lo1"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.846633421854461*^9, 3.846633488770653*^9}, {
3.8466353537367873`*^9, 3.8466353649612613`*^9}, 3.8466356245293427`*^9, {
3.849235858270897*^9, 3.8492358782952223`*^9}, {3.8492360383335257`*^9,
3.8492360385518045`*^9}, {3.849236526032632*^9, 3.8492365266423254`*^9}, {
3.8492717535300465`*^9, 3.849271754000476*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "1.4210854715202004`*^-14"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"la1", "\[Rule]",
RowBox[{"-", "2.128323981848135`"}]}], ",",
RowBox[{"lo1", "\[Rule]",
RowBox[{"-", "3.8587285265653866`"}]}]}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{3.849236040363825*^9, 3.849236527757566*^9,
3.84923700154625*^9, 3.849272186390209*^9, 3.8496543668812633`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"-", "Pi"}], "+", "2.128323981848135`"}]], "Input",
CellChangeTimes->{{3.846636348863099*^9, 3.8466363517947965`*^9},
3.846636403645133*^9, 3.8492366922284203`*^9, 3.8492370512696495`*^9, {
3.849272367808752*^9, 3.8492724000661025`*^9}, 3.8496543932412243`*^9}],
Cell[BoxData[
RowBox[{"-", "1.013268671741658`"}]], "Output",
CellChangeTimes->{
3.8466364046451015`*^9, 3.849236628552323*^9, 3.84923669396192*^9,
3.849237053071706*^9, 3.849272230958913*^9, {3.849272379016013*^9,
3.8492724011579003`*^9}, 3.8496543946646895`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"2", "*", "Pi"}], "-", "3.8587285265653866`"}]], "Input",
CellChangeTimes->{{3.8466363908796997`*^9, 3.8466364074849176`*^9},
3.8492367060981617`*^9, 3.8492370348631*^9, {3.8492724182023497`*^9,
3.849272423797392*^9}, 3.8496544107887726`*^9}],
Cell[BoxData["2.4244567806141997`"], "Output",
CellChangeTimes->{3.846636408391052*^9, 3.8492366326212373`*^9,
3.8492367079945316`*^9, 3.8492370369246454`*^9, 3.8492722331721883`*^9,
3.849272424470785*^9, 3.849654413016386*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"-", "1.013268671741658`"}], "*",
RowBox[{"180", "/", "Pi"}]}]], "Input",
CellChangeTimes->{3.849654453298952*^9}],
Cell[BoxData[
RowBox[{"-", "58.05601840362382`"}]], "Output",
CellChangeTimes->{3.84965445447414*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"2.4244567806141997`", "*",
RowBox[{"180", "/", "Pi"}]}]], "Input",
CellChangeTimes->{3.8496544671773243`*^9}],
Cell[BoxData["138.91114114106858`"], "Output",
CellChangeTimes->{3.8496544684371176`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NMinimize", "[",
RowBox[{
RowBox[{"Bminnor", "[",
RowBox[{"lati", ",", "long"}], "]"}], ",",
RowBox[{"{",
RowBox[{"lati", ",", " ", "long"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{
3.8466347575712643`*^9, {3.8492366402670817`*^9, 3.8492366406888714`*^9}, {
3.8492717633036995`*^9, 3.8492717641747475`*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"-", "7.105427357601002`*^-15"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"lati", "\[Rule]", "1.5049571834383901`"}], ",",
RowBox[{"long", "\[Rule]", "0.5853897803374876`"}]}], "}"}]}],
"}"}]], "Output",
CellChangeTimes->{
3.8466347586090384`*^9, {3.8492366366671553`*^9, 3.849236641672535*^9},
3.84923706140427*^9, 3.849272235485285*^9, 3.849654428231018*^9,
3.849654474671736*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"1.5049571834383901`", "*",
RowBox[{"180", "/", "Pi"}]}]], "Input",
CellChangeTimes->{3.846634824550107*^9, 3.8492366542194223`*^9,
3.8492370748583193`*^9, 3.8496544919370537`*^9}],
Cell[BoxData["86.2276949589154`"], "Output",
CellChangeTimes->{3.846634825525225*^9, 3.849236656578235*^9,
3.8492370761394105`*^9, 3.849272237751155*^9, 3.8496545629534836`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"0.5853897803374876`", "*",
RowBox[{"180", "/", "Pi"}]}]], "Input",
CellChangeTimes->{3.8466349900695753`*^9, 3.849236668437961*^9,
3.849237088235133*^9, 3.8496545202146254`*^9}],
Cell[BoxData["33.54036378342838`"], "Output",
CellChangeTimes->{3.846634991261792*^9, 3.849236670155841*^9,
3.849237089672767*^9, 3.849272239879232*^9, 3.849654565515006*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"gra1", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0.5853897803374876`", ",", "1.5049571834383901`"}], "}"}],
",",
RowBox[{"{",
RowBox[{"2.4244567806141997`", ",",
RowBox[{"-", "1.013268671741658`"}]}], "}"}]}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}], ",",
RowBox[{"Pi", "/", "2"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "2"}]}], ",",
RowBox[{"Ticks", "\[Rule]", "None"}], ",",
RowBox[{"Frame", "\[Rule]", "None"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"PointSize", "[", "0.02", "]"}]}], "}"}]}], ",",
RowBox[{"Axes", "\[Rule]", "None"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8492706001524377`*^9, 3.8492707108881645`*^9}, {
3.849270766664901*^9, 3.849270810959879*^9}, {3.8492712217642374`*^9,
3.849271232760222*^9}, {3.849272299677264*^9, 3.8492723283095016`*^9}, {
3.849272414277641*^9, 3.849272436807568*^9}, {3.8492725440370364`*^9,
3.8492725486985765`*^9}, {3.849654508194806*^9, 3.849654559636834*^9}}],
Cell[BoxData[
GraphicsBox[
{RGBColor[1, 0, 0], PointSize[0.02],
PointBox[{{0.5853897803374876, 1.5049571834383901`}, {
2.4244567806141997`, -1.013268671741658}}]},
AspectRatio->NCache[
Rational[1, 2], 0.5],
Axes->None,
Frame->None,
PlotRange->
NCache[{{-Pi, Pi}, {
Rational[-1, 2] Pi, Rational[1, 2] Pi}}, {{-3.141592653589793,
3.141592653589793}, {-1.5707963267948966`, 1.5707963267948966`}}],
PlotRangeClipping->True,
Ticks->None]], "Output",
CellChangeTimes->{
3.849272242626848*^9, {3.8492723213657365`*^9, 3.849272329804061*^9},
3.849272438347822*^9, 3.849272549720686*^9, 3.849654568779272*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"gra2", "=",
RowBox[{"ContourPlot", "[",
RowBox[{
RowBox[{"B", "[",
RowBox[{"la", ",", "lo"}], "]"}], ",",
RowBox[{"{",
RowBox[{"lo", ",",
RowBox[{"-", "Pi"}], ",", "Pi"}], "}"}], ",",
RowBox[{"{",
RowBox[{"la", ",",
RowBox[{
RowBox[{"-", "Pi"}], "/", "2"}], ",",
RowBox[{"Pi", "/", "2"}]}], "}"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
RowBox[{"1", "/", "2"}]}], ",",
RowBox[{"Ticks", "\[Rule]", "None"}], ",",
RowBox[{"Frame", "\[Rule]", "None"}], ",",
RowBox[{"ContourLabels", "\[Rule]", "True"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.849237307164728*^9, 3.8492373094214144`*^9}, {
3.84927081468633*^9, 3.84927081694629*^9}}],
Cell[BoxData[
GraphicsBox[GraphicsComplexBox[CompressedData["
1:eJx0nXl4XVX1/pu2aVpAQQUEEWSSUQZBBmXYV0UQZZBRZplFcABlsuIXHJgq
CDLJUFRkFMNMgULg3AoBCgEaSigtl5K0DZ3SkrRNk7Zp+8vvuefznme9F/pP
ntV97hn2XnsN7xr2Zqf+6vAzhg4ZMuSDrYYM+f9/tz1p4KtLNhtVrv5dltXN
+/O+k8bUi556wWd+3Li4TvSpw7724TrjBzLoz2+0zzoTx/SK/vMZY/84dHyX
6Inb/n5i5zMV0aW7ntvrK+O79oV+eoPlDx0zvpKgByrTluw1vkv0m0efMLFz
TK/oTdIPb91h/IDop79w5xPPLq4rQX945bp3TB9TL3qDHfY7csVmo0rfuu7J
vq6CLnc/0/LzKYPvXf1bL/rV/Y66/InB74Wuvu9AFq8v/ubfY3RF9JD8n40n
+32y+9r4QLL3K9n7i+Z7jS5Xf9ej74Xme6H53nh9bxbHu4yuiOZ7bTzZ75Pd
38YHkr1fyd5fNN9rdDmuS305vnedaL73k9ex61P+VkTzvTae7HfJ7m/jA8ne
r2TvL5rvNTrn107j507j507j507j506bh07j507j507j507j507j507j507j
507j507j505b34qtb8XWt2LrW6nZp5+8rsXfuL4VW9+KrW/F1rdi61ux9a3Y
+lZsfSv2vS32vS32vS32vS32vS32vS32vS32vS32vS32vS32vS32vS32vS32
vS32vaLLkc/qRfO98T0HauSs70tfxyGf8o/vtd+L5nvt+aL5Xnt/0Xyv0axf
svVNtr7J1tf0BONdRmt97b01nuz3ye5v41rfZOubbH2TrW+y/WvfW7Hvrdj3
ut50Oev70texkj75r/avfW/Fvrdi31ux763Y94pG/up7oU0+63vj9ZLPpkc6
9b3Qke867bv0+2T3t3HJ52TyWd8LbfLZ1rfL1rfL1rfL1rfL1rfL1rfL1rer
Zp9+8rp22Xf32v9L/9r6dtn6dtn6isZ+0vdCm32l743Xy74yO6BH3wsd5UyP
8WWPfYfub+Oyr/S99v6izb4yfu41fu41fu41fu41fu41fu41fu6tkbufvE+7
jI97bXzA5kH2s/Fzr/Gz6HLuP6Tcv8AfSrn/ITr3T/B3Uu6/iM79G9G5/yM6
/54XoHP/CX8n5f6V6Nz/Ep37Z6Jz/w1/KOX+nejc/xM9/DdXnfyzoxvK1b99
WWXVOr/9XjZM9JNjbvvbZtsMEV2dn2UZNHY4NHYbNHre6GTXJ7tfsucle5+S
va/o/Ht8vFz9u1jfA833QPM9Rie7XjTzV71vt54HzfOg+V5o7g/N/W08//+5
ml9ovh+a74fm+6r36dD9oKNd3qH1MjrZ9aL53ur/t+l7oXk+dPTr2swvaTM7
R+Oime/qdU16PjTPh45+SJPZwaKTXS86ytEmf36y5yd7vtnJTSaXmxLrbb8v
QbOe0Lxfzn/J+NP3c7L9nGw/J9vPyfZzsv2cbD8n28/J9nOy/ZxsPyfbz8n2
c7L9nNa7p7TLqYPfB96DPrL9b/t7lMYX7DTxB/sOzge/R3+5vEBvNT932Glf
GpyviGcNZCaPdD24U3y/3szkmf5/3n3N29w7ON+Gl9XIV67/xu8feuLZwfWI
11dq5C/ff/jj+/648ZkWXY9+dfnM9Ttev+emNwyup90/2fWSf41L5n91yeB6
2/vXyHeuv2/GrI4Jg/xg81Mj//nepa9NfnTU5svs/gM1+oHr7z62I9tmkJ9s
faUPXn/jmPsPGuQv4x+NL/72pL+eO8hvjifG76kvu/yPemOYaPgjyvFlGfKd
+eV+zG8c79J4lL89mq+4bxtK9n4l7sf7Rv0wqkZ/Mc77u/6J79eSmX4TH8Nv
fj334/ttPNnzkumzZO9Xsvcvmf4txfvV11zP+7LeNl+luC9Z7w7NX/yeLn1f
3L8Fvubz6XhbvF+LxqNdPtfWv0PzE/V9XcnnK+rz+pLbE/Z9NfYF45G/O0z/
FvibvV8NHuf2ifn1NfYK/x/9o8JecT/Z/apobwzUzF+0V+pq5svtn6jn8X/a
bD5a7Pub9P1uH7m94vZSfB7f22Lf26L15vesb7xfvewl+NvwrRp7y/AwvS/f
G/lY32u4UmHPfIo9VOMHm32k9WI87ucm29819pT42fC7sl2PPWt4B/ZcXY09
yPURnyi+n3Gzb82PLezFeL+BmvliPOIZhT3JuK2/4RvF/MT3qa/5fn8ff77f
H9rkZ4r6siOZfEsm7zVfuXw23Ep6UOPmT33KddIfut7taacdL2Dc/E3jh17Z
34yb/Sh7nHGzF6Xnzf6vibswHvVLgdszHuVGgfvaeA3+YvevwWHcP7HvSzYf
JZuPUrzPsJLNp8bN3jH+LfAq/IfcvhN+Y/6B9jN0bi+WI14j+z/l9qbGzd5P
uf3qeI/Gc3vYxmXPp9y+1rjZ7ym31/338q9y+z/Z8zWe+xPJ3l/juX9iv5f9
ncDJGDd7O+X+UyneX/Z2yv2xkq2H+3s1eFXEFYu4pvGz4QkFrg4d8ZEeXe/2
tNGKJ0f932X6vogzuv0bx4s4TtSHXVnUh0W82O1bt0/dXoy40TLRcb91mn3Q
mcX9VNwv2rHLnDYcqce+G7ussL/c3nL8yONYHvf4ZNy4SfeP9kRdjX0Q9xXr
25LMvkv+1+wtw3dazJ5pMXxH9xcd7ZMiPoh+jHJ0rsnRbu1P12eO73+yfO+0
/eH7qsnWoUn7Odo3FemXaJctlnyCPvL4i3Z67M+rsuU3P3jmv85dKhwDmuug
vzZ79QHXLlgu+rM/OvO4XfYeWareZ6H8hOp9Zmdxn7RrHJrnV/+/NXt7s10v
vWTq0Hy9G/W86nc2pxd+etFf5n0G/mxOH72/8NefvXe4aNal+v9L9J3Q1fce
Ua6+d3/iedC8DzTzAc33QPM90KwTNHYXNO8HzftB873QfC803wvN/BvN92T2
vVn+e9H2/Vn+PNE2Hxo3ftC4zZdwLWibP/nh0DafklPQNr/ya+z6ZPdL9rxk
75PsfWvGbX9o3NaL+Uo2XyWb75KtR8nWS7Str9avep9Fer+cv0UzzvOq7zlP
z4PmedARh5ip9YCOOEa71ofx6IfNFH9UfzdVNPs9xl2m6v7Q8Fu+v8WP0Iwj
L+D/nNZ+h2bc5IfGTf4ku7/Z5Y2yw6DhB2j4gecx3/Z+kl+2nr6fk+3fZPs1
2X5Mtv+S7TfJq5y/k+03+bk2Ltr2X7L9lmx/Jds/mh/ux36Btv0k+ce47adk
+yet+cqpe942uP7gydgXUR6MEj3z8Pk/umBw/bke+8PlH3Luwudnv/3vQX7k
euxPl59cv1Vb/7DjB/9GfHtZjfzk77tdo3b7wuD+iHh6j65fa9TuLbcM7s+I
p3dq/LQXJ/z6m880WbyiReM/3XnND9f5S5vh+y2SX++cddpnNth8rsULOmvk
Y4wHSP9K/iKPnh37r7YjBvePfU+N/OV+a1x+3T13DO4nmy9d/9Du2fiezxT5
yNh3jLc9uPtd6w3yi62nxldu8vBV3xyUr8YfNfIY+4b9gX3D/aL8HKXr434v
/BF+H+3+mZ+CM3ZJ3kbcuUO04a26HnkQ37vvU+Snx3MbDTerkXfShxFvHFUj
b+N9BiQPo7xkvEvyD/6Axh5nf+frV3b/NMqjQj7m/KDrbX8LX4DO+UvX2/6W
Hwud82sW/ellJk+7ROf7IYv+e49dXxGd78cs+vPa71oHl+9x3Zq0jvn+N/yi
xZ+f4ve26fe5fDF8QvJD6wmdyyvDOzrt/r2ic/ln+EaP3X+gRp/wfrm8TbYe
pq8K+xr9w+9z+Z5s/Uvxfetr7HN+n+uTkvGbrkdemL5yvEXjES9odv7PbH9k
xu+Z7YfM+Dsz/s+MnzPj98z4NzP+zoxfM+PnzPgvM/7NjL8y48fM+CkzfsuM
fzLjr8z4IzN+ymz9M+OXzNY3M37IbD0zW2/5Z+hH5CX6g/3rNPqG/cg4/Ou0
2/+MQ8d1G1mq/q5HNL9H79jzMx+P+qspMR7l0ews6h35Cyn6H8X7x/05W3TU
n/U1+hg6xp1nil+hLS9Af90fwj/B/mQce89xRq6PeWWtFndtzcxfEc2+wD+J
eFub9LP5JzU4kPknmu+470bKP4nxuMKfMn8mx8daLT5V4DU2rvvzPK6H9uuh
ed+cP6XfsA+gY/yhzeyHIs6HvYo/wXzl+1F6BNrwsGR4mPsbyfyLZP5FMv8h
mX+QzP5PZu8ns++T2fPJ7Pdk9ncy+zqZPZ3Mftb68L1mP8t+wu9kPyDf0B8x
P6ZP43E/LtY6Qtv6WL5FEYfz/M5ofwufFf9H+VqRnxztndkaj3KuLWFvMx7t
eOKyrSZXavBcyY34/xXja+136TvG4edPGTfculn2E/PKfET7u075Vsgf/Dv8
B2jW28dZL/wRxg2flZ0KjfxhvZA36Cfej3Hej3Hwkri+XZbvOxd5In8WmveJ
z+sw/dSRIh7WK70Y/eKpltfcqvVk3OS69KfpC13P98R4zVyNx7h+q+klz2tp
1vOgY9yj2faT8s40HuMgjR6fl31j+GQNnux0zA9d7PEJywft1jj72OmY79ih
cebD6Zh/KbxM8+V09LOFl2k+nXb8xPFmpyPOPrKG36GZf7Pnysb/Zs91Zmav
mXwckHyM/tZs2V+Of/B87CXGoaPcH6Zx9E2MG4ws837QPB/603AS2yfGD7M/
NS/Q7dWIuzSZfpCc1T6L4y2yJ/l+t2f5PeOeP4geif7mbM230xH3HanxqCc7
tJ+QZzGPe6rmI9K9Jn8KHAF9wPURvy/WweMBPu64mNvPyB/kidPRThTeLxq5
G+132cc1NPe3+KTLP9Hcn+e5/QzfxPdDDrdJX5s8Fu32P+OxLqDZ8Lsm4eeM
x/0o+V1jn0fcf6Tsf9bJ7G3FF+J3yl6vscext6FjfpLiW/r+aK9IviazJ3Qf
w5lr7u+/93gE94vxnV6tJ9dDx/cYrnHmz+nod0g/io52ieKxHs9PFn9Ipl+l
R5y2edG46VfRsb5E+jaZfhUd+VL6NZk+lD1q81Gy+S3Z/Al/i/hzkefseH7U
by01tOvDeL8Cb4EfnI74w5Ca6yP+MMTk8xDhC7E+Z7bJpxbzm5rtfRtFI49M
fsgeMTxA+Tcxv4l8i2WSL3wP8oD1cv+d/RvxA9kHNfYh41wf16++HPluhOyD
KF+L/h1mf4jGnzD9q/tFfdIlewAaee34HON8P+MRj+mS/rf3rcHjPJ7E/SLO
U+Bt0a5bnox/FEeI+TVel1j004Afox3dWlN36vMU9Xuz4W01dY+avxhfkn8r
/WDxJ+WXGZ4lmusjfxT5YWYP6HnYv9BxvYp+DBF3Gi7+j3hri+nTFu0Pyz/W
fmHc87SjHdZbg1fx/3G9i/psruN70G+RH4p67SjPe8yOVF2UyS/qq4Q3ZCYP
hAfE/V3gyNCfjJs01vCN+buKp5l9xe9dv2am3yy/rfAH3d9zf879NeYHewA6
8t1Cqxfqkb6IeMUQ4duMmzwsRX9vlORZzBeerd9j/8Ov7j/EPKHFWZzX2jxT
zxdyOyDa8+T7tAk/YjzGqwv5wnj0F5rNj2vW95t8qMkf+mR/oMn0LXJV+ZcW
7xd+L3mCvkJfRj5tMnu+Sfs3+uGr7PoiHzLKI5dPTWbf46eOqrHfDUe1eoKO
GnmDvIh4UK/5H72yf6O9OEr2q+XXJMN/rO6/sDfdPox2+wjRPN/iYTX54m6f
Rf3eW/PciH/01ti5Fh+SHLO605q4he0PW/8WW88WfS/XR35sSZuvsfkhLzUs
Twfvut/QW8+U/yT5GekiLlf9/wkZv//xOpsPnHyQ/KXM8F3P/5F8jfumsB89
Hhfzhrszl3fgrOaPOX6q5zEf0Q5p17xDM99Ox7jncq2H4cM1dffEfZjvKBeb
hZdwv5gnPSEz/WRyttHk6jivP7X894r0f47HmP5rMlxnnNeryv6B5n75e1h+
fSWZPnF7RfI4xn8q5seo7kHrG/dNl8ULJI9kb0Bb/j3jNfaL+wvmj6m+I8rP
Dnu/mXq++298Z4xvduh9YrxA9Qmmvxp1veuDuN8qpme6jB4Q//F7j+f6+rOe
6LOoHxQv8nigno99iv606z8tH1TyJNqLqk+TfcI4+jvaU92i4Ufo7x595si3
Lqsr/eD/btttzj8WZBG/AR9eJjsj2oez9Z2WHyj+wJ6K8kX1rebvtlqdIf6V
6kMtf6PR+LfohxLjTOoHIz0U45iqJ9f1MY5UxMHMT5S9bbTZDepfY/Wg4D6q
bxfeEHFA9UfQ+8a4l9ZH7xvljvr3pLivRNfUu0Y7Xv199H7RTlL/Ib2f1QMJ
Fzb/Se8XceQWp2vssqh/1G9C+Ar2mcVvhQ9avrn8vwvuf27ucyvryzfue9SU
9R9Bjw0VXd0nKzNo9ik0+woavoeGb6HRS9C5nSaa94Le/aUPvn305BWi2b/Q
57z2wceLvlgvuvp3pGjDX7OqXTOsfPUpF31w8MQiLwEaOwSafQ6NnIdm30Kj
941Odr1o7F/zjxU/R/54vJ33hLb6LK2L8Y/4jHHsGcsnK6OfLJ5hcbFG23fN
VhddxJejPtB8oDdFGz/LX2T9Yr1I0Tfa48nR/liWRf3Sk0X7oVITP47jTX59
TTw42idtZp80JbefHYe3903+vbw338d68jxf3xjnK+QQ9/N6IH4f7bqFpjcU
R0wRX+iQPox+3bzsm7+96rMj7hhSqvoVRTzX/QGPzxr+oPvF+M5M5TFX53eG
/PV4v1E18dLo9/SYv1Axukl2SdR7RR2m5f9Jn0e8vMP8WtVLiY5x0YL2/JDo
T3Zqv8X4cpG/6HTMFxmw/bxMctvih1m0N8kvUv6K9YFolX5l/7P+yHn0KzTy
JsbzhpUNryxHPGKIaPSn1YOW7HmiI55U1LvH/d3itO33Tq+fzXy/RRyL9Sv6
FDgd8xL6xG/cN+JfbfaXemnPF/U6gQIPj+vVK3sDfoj0qFKc76YaOzHiupWa
+C3vBd5w6Z9vm/nnmUuzqNc6sur/j5A9gv6GPmnPo7YdffbqLOr7ftHcD5p9
D808Qpt+lr0CzTjX53JFNHwOzffxe2jGkY/QpyxY3bvtLsNFV3/X4PYN35/b
GQ2izZ7z+ctye0l0/jzRZv9lNt/4T6Lz9xdt9mJm66PfV9+zN8vtO43n8yPa
7M3M1ld6GRo9C232qWi39xhHz0CjN3yc35u9K9rtRcaRw9DIYR/n92Y/i3Z7
08bhL9mfPs7vzR7PjL/5HtHYazYfyeYr2XyLRo7Y+iVbv2Trn2z9RZt/IJrv
s/0Gf4rO+VO0+ReZ7U/2h+h8f4g2fySz/cz+FJ3vT9Hmv2S2/zWf1fsu0f2q
3z1fNPYW612d51man+r/j3V5kkyeJJMXyeRFMnmQTB4k29/J9ney/Zts/ybb
j8n2Y7L9lGw/JdsPyfZDMv4W7f6J+buijZ+T8WsyfsWfzv3u3mT8mIwfk/Fb
Mn5Lxk/J+En+VJQvo0SDF0T+WmXyr8/kW7fJrx7zhzs0jh0Q5VmTyasWk2dt
Jq9aTF7NrZE/VT5V3YGNF/sf+zjKn2J/go/E9y/4H/s18lvB/9ivkf8GzB4p
rsfujPy+3Pi3y+yXxTZesf0wVzR4dXxem//e9keb+B/7Ll7fYuNdKc5Hh92v
1/ZXt91vwOypPrtfgffgT8X7F/yPvxLnY5Tvhxp8yPhBtK1XZuuT2XrInzV+
tfGK87vGWS/bL6afNb+ZzWdm85fZfGU2P5nNh+yBqhz6WPoP/YI8ddr0TYY/
jr5B/3C/6rzPEV19j4+kf7ke+YYeQJ/n+kt09Xc9wgtzf8LlXzJ5l0zeJZN3
yeRdMvmWTJ4lk1/J5FUy+ZRMPiWTT8nkUzL5JHnh9VNOex6n4zmWT58c7/A8
jxhPnKt5YL8Yjil7Bf2IvGa/xThwndcv6H0j7t6t73Y/OOL+9J2ZKPsV2nF4
4hURT+nR9dhLebxX/hL+K/YN/g32DePYL4wz7y4PfP+7vc79sFfs/tgX2p/E
uyLeNFffw36MdRfF/uR69iPjMQ433fDfNsMz2uQfVv9/iugYj27P+W+C7LWc
X2Sf5fwkfRP1UaP0JvYV8ojvYR1ineFEXV99ziTZY9Dcn3livrGnY34i8fsh
pbgOK/PvGic8AL6z/EDLj1O9QY295fYVNN8b81Xr9X7IW94n4plzDa8s+goh
n2P8f5LwFdaT94NGPiMPYh+joj7b89CR71wPzftBgxtV33e822+yf2M8oNDv
Zq9lZp9lZo9lZn9lZm9ZHllxzpbdz/z1XhsfMP1f5/ap6e9Rbt+WYzyiS3KJ
/eP1mjEOrPxRPS/WDRV9IfgLrmJ5AZI/Md4wYPWXRXwC/DfugwHJzRg3Kc5j
sTir6CifOsX/bn8wjv6N8YaR3o9A8X/w7IjX1mk89t+pmB6davq63eavklk+
juWXV+TfMB7zA+lL1CA65iu2aX94vgLvF/Pni3iHvz/6NOarTvX8Knv/4nzD
GP9QvrX4O+oX9fO0vN1G0z/gZORjj3Va8QT8nLhvi7qQGPco4nCRT4s+5JZ/
4/29a/IzYpxF9cZ6frxvEbeL69pmdSCtmud4fXFuYYwfFH1EPT4ATX5OtBvr
PJ9Icsbyq/R9HhfxOJvHFfj9J9e5qH5f/qnnp9jza/JVYh6LzidQvCTGvXVe
geYj5qso/0v5VDYuOu6vuZo/z4fhu0z+af4irfMwPqXOQv0QNF+eH8P/I6/t
fUv2fjXn/Vl+j/WDH+Xzafk0Oj9F82N5yCaHir5zzEe089Uv2s490LjFMdUP
Wt9j+UA15/v5+8d4o/A3/Z7viPlfRb9tiycq/82+X/LP67mhsb/wB2I9hOoD
rJ5Z/GD1DrN1f2jujz6N/Xs7pT9jnHVEOfqVkhd6H/c7o/7U/rZ90m715X7/
Vvkfuf1q9nqL3p/ro31f6A+vJ8BvifZRoQ+gzV6wfthFXid+X5QbU1Pk84ru
x741+8nq+Trt910ah8Zfxr/E/o7x2uL8J/yNmF+lek7hTdDYpxGvGKZ8Yb4n
5mU1lKvPKc5bivlOw3Q98QquZzzmhyq+re+L1y+WXxzxlqL/LfwV5dxMfV+0
n3pk78XvnGL1Va1ZXLepwi+4PvJPi/JrsHesn5PlN3u/j0b5u/iDrCd0tLca
JSc9Tx5/3PpZyH+L40X8mvWJ+OYQ89+W1cQfPN7g8YU43qZ5Zx86/ul4S6z/
6qzBY2Pflx673zLDa4t4Ivol9jsZ5v6bxtE/sV9IER+0/k3aL7l/rP0AfgXN
ON/p/XBivlmnaPaz7ddSzC9sKMe4eUMZvBh56flolr8tv5L19fzu+Ptlli8m
/Sx5ZP1URINvgX8TT0Nfgpfx/vC/9Z+TPox2gvCNFOXFMtE8P+bl1SlfjvmC
jnhpu+UbVbR/zF+U/ox5idO8XsXqC9tFW7678tljvVWL9rPr2+r/T7b8OK8v
Vr9t6VPkX5RHilNZX/5xVo9V5MeZfBQd+8tMTSa/re5maop23lTZc6aPvV5L
94v+wNRk+XrWv6MtWf5kivpzpsnj2cn40/ouzNP3ENe2/pKaf/Iy2C+xf16D
27OiTX4nk9/J5Hcy+S29FPHdFhuv+HhNvJ5xk9+K18f8rh6L30h+J5PfyeR1
Mnns+Y6Sh54fHPGwFutP1iD5ivxEHkETj0Oem32v+mD4z+VRxMeGWf1/g+fL
Sl6BX4P/xz690yVfsK9N79r+VD2w7O3of7dm0Z4u8lOdjnVawzTO/Hq+KvLF
6zAsHpRs/rR/oS1fWfgCNPIvfs9cs5Nmix/5XcxHKfrasA8Zx8+EBs/EniEf
B3lPfh7xD+4HHhb7KCzVfiS+ynzxPPYbfMB7xvz+pRo33MXjXdqvvj9jfuay
mu8lTzDKz07lbxG/IJ8G2uxhnw/RMU7fIPww+u/UOVBPNFF0jJcs1r6wuK3V
PS8SHf0I9Y8wnKPL8OJu+efYN5Yv7PEs4b3IK/K9iN8wzvMZx76EzuuJ5a8j
3+AX/C2L7winRN4Q/0O+QBP3YR/C33F/t+n5MS5c4GTYAcRP4U/8XfZz9GeX
Kt4KHeOxfaKR1+6fun/L+kDHOEZ9jb3K/MHf/nvvp4f9Ch9HPKdR+A008V70
H+sR46dTpQ+Q9+BDzCv85/KGeC/vz35iv2DvQXM970c+Hc9DDhJvJX4c46+9
el5uj1r/gtnmv8+1eMhcxf+ZT74ffYz/jD6GjnGyoh6V+WG+Y33sR9qfrFvs
L1PMF/rL6vkl32J/pEXCA2NcTf0rlBcc8ciin0S0Z5U/Jj3N/XlvaPS/1fNa
3eQQ2T+sH/IB/wx+Z/3hz9hPoaLfIy/AO5AnfJ/VyygeZuddyB/E30Cf5vxp
/UKatF+5PtbFjUtR3xT9QBiP/ss42R/sb/J14Udo+BG+j/VQS7Xfo36eo+s9
HhnjmYvdH6rBq2M94xDRsY9dYT+yPmYneLwwmbyRXGf+YxxR9Usat34Q1i9w
ZjL/PFl8Vf4AetT622v9ol5SvDaZ/ZxMvup52APID/Sv9W9SPNf6LWfRvlI9
jvWz97hR0U8b/kI+wU8xn7xL/oXHw/EfIh5Z1GlDcz9o8unhT/B2aOxj9D3+
AvZcjFcpniz8k/mJfUV6pa+4H/S741rWu3oO8vYam9cW7QPsvRjfE55QcvqT
13umnVcy2+JFnYY3dIl/opxfZXJlwPvfZ84vFpf1fBHLuxhl+GSv7AL+H3sQ
OWjxK8l/9DbXx/tjjzRJHsX4Xbv0DfLE+rdZ/OYa+171R3U8Rv4d8+f7GT60
/qDWX6JP9VjoR+sXmkX7o0/2IdfbeWrWn7lP+ozr+T36H/+Z9SRfEXnC9ehT
+M7jIV4/G/FIcNYZ5tdM1n73+AZ09KMnZ9GeKfrbR/5Rfal+z/ey3xlHH/K9
0FwPHf2vBv0eexr+hGYemL9ovyhfUe/H76GxZyIOUtBRr7ZmrA/6A32PfRHj
wQ3K/8NeQn5DI7+xZyLurj6Mht9ULH9vsvwT9mPM7yzyQS2uIrvR7if5x/VR
37UpPsX1Mf9iqvxx9F7sbzfVzicp+udYnrHiWlZPr7/xvBI/R63L8Ixe0TFe
V+QZxbqa2vOwWU/4zfG/qM+nZhbPKKMfsW+Ql7wfcjT2gZwgGvvV+j6rPhN/
mHpU5BH7Cxp73Mc9PhX1QxG/uuf0i74x9pzh5esffK60xr90voj5Ewu136Aj
HtEoXCqfp9Ty3sKNykMV5xZt/Zu1PrFfSEEzzrywflYfavhNET9nP+MvsV+9
/z7je39m83s//+CI0ls/v+rxls8V49H+L+YffQbN/nd82fr1a7w6LyPLPA8+
iHh2bV/Y6K81io5xuVmKX0W5t1p4MrThyY43i1/BB5EXEV9oll0Mf2CPQKMP
Pb6EHwTeRX0D+hUafo79Bxe6/Ld+eRXR6JM4P+3J9a3rU+YDuYL9wPXgU4Yz
St8zznuwv5Hr1v/E7MdWXQ9/8b3wEzT8NOTDhRNPOKDoOxv7HXdZPgZ+yXzR
6EOexzjPg+Z5j7UtfOm8k+d73Nv7JUjfMZ/RP5zk5wkofoadCj+Ar/L/sZ9C
o/Aq6CiXmzSOPRTrVNQXS3Yp/QnhX2iTj8LHqK/g+5CP1q9BdIwrFuPMo89r
rN+Zqf2P3RDx6TaTFy2i8Rd5f+Qb+Abvw3rD/5b3JzkU/d6i3gI5xv14Hvsj
fl+PaP5iPyOP4vco/1t6FDmAvERexfy3Fo3HeMKwmn5XcX8X9Ursh+if4T8V
+oP3hT8i/k4+aqPksclH0THvtojng+dGP6vol8s4+p/1xF5g32MPPPd4ywvf
2l/njMm+hI+Zz/v713n9gdHL0xpNLS9+dQfthwx5xPpBY28iz+18iMzwZvlj
0MxTXM9G9TuBn1lPcI3q9S9aP/c27T/ux36FjvVFrbZuZe9PJPyAdbD6KdVX
gldZfr/1r60k45dkeKv1sy3iGYbvlr2/E3IDfCjas6M0Dl4U8aAu4QfIxzgv
RZ5wzIOYZnhyi9abeIb1k5d9BW39FzyfNBm+pPmMuPlKxWfZ5+jXmEek+krh
rdb/z/NvpWdiPovqUey8k9l2fsdsXR/jethvE8yem2DnFRV4iPvj0d9vS+aH
mv3cLnsN+y7iGQUd888L/9L668mfxn7k99F/K/o1eTzA8p1EI69y+aP3Rx5j
zzdf9+Azw75W2NvQ8HeMh3neguYrRfuyOIfd6rtknzL/2PusD7TbeRHnn6T7
Qke+mSY8CJrnM/88H3nA86O93Cs/l+dHublYdDx/dELu15EfXk7Rfi3iX5Y3
In3L+3m8HXlq+VKWT67vK8V4d5Pw6livMVX6I+LdOv9Pchc6xmUmSU9Z/CWL
+qli69ieWb224g0RP+mVvcB+QJ47fosdiH2L/ot1Oy2SO+Dp8TyPoj4J2uIL
dh5Gp12v+pRylKP1so+ifOyWPjJ5Uo72a7fsF+xy4nVxX46z/u1N6t/i+dbQ
7PeYX9AgecXvsTehox1bkV0DX3G98a/wxVhXu8zWq8DnkI95frrwNdYRPAF9
HPGjsUY3av+zX7Y54szHLpteyEv4JOJSzZYP0CQa/kK+wp/s32c22XWbHfco
5C3+I+M/euWDW++5oJC/0c5eLHmG3Ih5l1NEM+9x3Yr+pNDYGTH+0qr9aPlw
yfxL8Qv8E/frOMm/6n3GC3/Ff2O9oS2PRvwT8wemyn8w/yqxftjnMQ96omj8
mthX4EXZT9ijMZ7aZPZXUxbzPYr+AshD1j/ma7eLj2K+reyJstkXfr675/9K
vnC95wPFviPF+Xs5v0k/8f8xntcimv3CfoaOuBpxvimiWTfWC71j+sjqB6dq
n7LfY75Er/xP7FFo67er78I+QD/H+NAEXYccizjLNIsfj/N+H5a/PVHymftH
HL+Qx4zHeElxbm+0h9oyy2/Re0LHvKsG8R/3j/kYBY3+MflfjvKiOFcyxiOm
qL8368F6QROvQR7n/ove38Y1H+SLQFv/XeELhncZPtCZRXmlc2ptvbu03jG+
P1Hr/8l8Sp0z/thY0ciD2G+futhRlu9b9CHh9/izdr6a7AzwIvQj8439Z/ho
yeMnMf+r6EsecZqPlJ9Q/V2n1tfqN4SnR3u4Vc/L51f8yjwynuvvFP0Z9pnq
32RvQVs/KP0+6kXV88g/iXaU+l1Lj+8/b/U/3r+u6OdOvLX6/w3lmVvtd99J
HxTxbPxPyz/keulDiydLv0a/Y5n8bfjG+/PE+rBWxdPxky2urvif10VRV1Dl
I/XHLYGPII+x39B/n4zDTpA9gT6I+FuL/CDwJPKlkSf414xHu7+oX7b5EX6L
/ej2tMcn6e+C/1vVi/2y18DvsQuIB17Svfqgi98ZktvLH2XRXhir9Yh491TR
sQ+1zk3WfBLvYRx/nngYdkJ13lulZ5kPrifewfVVPpM+kzzO7e78fV6UPEEO
RHyoUf2SLT9EuDP2GPOHfx3tswLvZP3YZ8jZmAc8quR0zB8cJnmDfoHPotyd
KvkZ66/qjN+U76b+AHYehvCu6jzXKT5KfMbPCwM/tHowO9+vVfYMeA76muvt
vC7hEaxPxF10vpvOa4PPoK3ez/qi6fwl28c6D0t2jfFxsvs53uf5aeUoRztM
ruo8AMlzaDuvosZPxt8yPFP5yew39D/2Lfo/9lmYqPoE7of9g/3J/WL+RUX7
M+bVFvi90dJD0Q8tznNAH/DdyHee7/mUfB/7O9o7FdmvkY8me/6w3g+5fOdG
u7Z+eNOylOvLdMUbH+z/7WfryrvsvN9/D3ypN8vpEvK1Kgewl67h+lweFPer
/n+P1We2iS94H+Lf8K3hutwv432wQ/63Yp3N+75MvsLYhP8d82/Hyb5Av8bz
S1TfVtPvgn2DfMB+on8z+gh9B42fyvrEcwp0jpXiC8SPoC0/VPyJPoZfrF+e
aOIhsZ5sVCnqddWfKj8HfYJ/yfrGPGLVw0n+IK+iPG6V/Rzr7mQPSH5HfTpZ
9nTk36GlyEedkh/x+iK/GnsR+53ruV/0I7pSpAdqfs+8W7248su8Xt/qOzWO
/QOfs/4xn6Q4hzbG1xZKv+BfIU/h11h/PFe/h79jvEf9+mQfxvMqVA+RRbxv
ruR8zH/rkN3O9VW9ukr2TsxHbrX9qvMRHW8XP2EPWn211WP3JKdjPn+D1WcO
Ex3jpbK7U/RH1E9A/h35UrFeocf8oKmyZ20/Kv88xsubrd6w0ep5Cj8efwd9
Cz8hr9Bf/B4a+zmX17I/oRmvxsXV31J4Bniw91fg+7HH8bfAS6tyfa7lz7Tr
/AjkId9R5eP3rf5D/mkJfov6ZJL5OxP0/cgp8BP0CnoDfZh/p/L9wI2hwevQ
//At8RvmM+LH9HX/UN9X/d43VX8a7Xv1m9X74i+zH70e2OtveV/sEehoD89y
fjN9McHPNzV9rv6hNfWhnn8Zz6dq1/ozHu3lpYpr479PPfDMxpv7Foo/Yz5Y
Y4p8Ct7bLH+++j2PJWjwVK5HL2FPIm/hL/AV/EnWN+r3hdKr+BfkO3g8l++J
/WaLejX2A/PB98W6jSnSz/Af/FbdV0V/SOQp+xd+Yhz8quoHrkj4f7ldmtiP
yBf2D/qM+/E94CXoN6untf7Ho0oxX2GJxfeLc3DBr7x+wusjoNmP69724PML
P79Y+Zjwq8ltw19axT8Rd5+RuB/+8+1X3vatyZcvFn8Sn4LG3ud9oLkf18Mf
zD808ZZYn1bkx0Ozf9ln4InwC/IFPIX34f7QzD+0508zzv7M5Yu+h3Hen/0B
jT7BLwD/qe6LVZKPET+bKfmJP4Df4PqN/eB5orHPuvqPat+iDx7+9lE7nnFY
kV8Jfku+WP78FO0m8KweyaV4jt64mrxAvp/1q/LVsDLfx3zkeKTmF/kF/+E/
fm/TJ4446qrh5VXb7rey8dIu7Qf0Ff5a9T5vJ5M3ijfh32H3xHqOBQl8qioH
8UdeyZAfuT+h8er33ys5y/PMP8KOTOwn/E3kJTi+48HgdfAr/AW/YB8wDn8w
jv/GPsn5T/4A/IU9Dc1759+v/APkY8yHUr5b2eUvNPsJfkL+xPh/v/mXM6Rf
rvz7dje8MmF4+eK9jrrs1bWKPrXwV1XODC1X7bSl8j9j/wKdlyd/wfo127lZ
I6Uf8V9jvm2Bb6APYj/yAmeJ+Uj0u1qoeoB4rt9HwuNiPwLV6+n5huc5Pif/
Gzwx9ocYJfvd6jflf8f8o+Hm3yi/zPJlmi2/oMh/sHxCq7cvcKdYj9lseTUt
isdGPLHAF/Ebox/fLf/e8kYUh4vv0yZ/y+r75G/b83S9xaf0frHPh/qR1uDw
Vv8p/NjuL31o9Wna3+h961eq94v4ZoF/8n2Odzp+YPhnyf1J7sPzHY9gnPtx
f+tfJxo/FvsJP4b5go75FvCVvkfy3+LR6i9n8VLPf1A9meUHql4i/r6o34F/
kaPVv6+pfxjrDK4X6TbxQcwvqAh3jfHZFqcNd1L9nfVn7bLnd+l+RhufqF5U
97N6QvXp4P5xPYtzSmI/hh7Lf+sV/0KffuGwDV5cWV/e9qSBry7ZbFnae+g1
O/9zUF5Db/PlbW9Y+o+VGfR7u37rxYcH/TDodf5+y5w3BuUx9LkvP/ODfQf5
B3r5CY+8Me/ZRtF3jaufMWFQjuj6/7b/9dxBfoIeue9P1h8yyA/Qx2x1SOcB
k1eIPvLKTaa9clldCfqSFTdPmP/FetH3/Ooz/1l70L6FrtoNw8rgI7GPWp/8
pIifqH5TeBT6An+B+Gqs951g+6FJ+RmMxzraJuEp2IPeJwv9Dh6BH2z9h4xu
U1wpxqV0Lk5N/DmexzNC/SWIJ0e7aUg56ufZWawn7BQeBJ5h+LvyD/EfY78n
/KMOrQf3g+a5ke9Vb676N2jsI/IrYj+Tgq7GGTg/Y47uH+O09Yqv488T77P+
jPp+xonfWj648KnYz6FZ94v8ovrEzPKRLP+8LcV8simKx0U+UP9g9T9ymuux
XxjHn8SejPk6RZ45/iXzCc3+oH4NfBsa/oz1by2i+T7DNxW/Y/3RV1EvzjK8
fpbGY78I5MDEzPpDWb7lWOH54CusT4zPVey8olbharEOvV/rAl6H3cA4+hg6
r3M0fG+RxtG30LxHxDfrVZ8c8a9+4Rv499gLjEe7lvPnpmRcj/3BOPgQdB4v
4H0Uf7PnpYgbTzJ88yPR+OnQ+f7W+1f9+oJm3aHxA+P7jxWNPwvNvsY/Rc7F
8+6Qe7PAJ0r4wzleXq7mbfXneStDRRNPgUbuQ+MnQiP3oHk/aPgLGv6Bhj+g
8eehWR/onD9Egx9AR/y+x+rbusUP2DF8fxUnkt5L0DHONV91vuSv4E/FfN4i
3hrzFxsVr8rxYeE/efw5xfyCot8b+gk8iOdHv3ac+Bv8OdaXtClOjT3C9cQL
on/YKPuZdeT35A/xPjm+Jf8CPYC8Amfxvh7RH5SdbOe8rRKfYzfE/vvq86j7
MG75I6J5DvaG9yO0/Dbpf8sHVz4oNONcb/6g6duK9APj6G/kGjRyD3sGfWH5
/8LD4WPo2FdDfdQyxzl5j9iPYLjsNZ4fz1MbqXHiX/wefR3z0nqs3rpTuCX6
J/YTRr/o/D/pW96H/WbxfuGt6D34DdrOU1D8wPMoLd+0Ji8v+vttuj7iYTOV
32/+dtniv2bnLte8WD6u3g869uERPiC/+tPyZGK+Q1FH4nny8Jn93vJnG4Rn
YO9Hu2Kk02XDE0Rbvbu+x/BY0bH/TpeeH/sEjxQNPyIPYx4D5xvMkT6G76Aj
ztcvPcy458HAl9HemJRF/d5s9s5Esw8GJB+RD+Cx0HE/d2dmryqfDHwp1p3X
qZ6D8VinXlf2/Dj2s9njwiW8/0isV1ho/YF7dT1yi+utb471Dy3qL+zcSLPf
hFdk5h+ovirm01DfUOCgHo+P9VHK51X+AvFB61+heCnjzCfzx3p6fAma58X4
ViVZfZTFiyt2fkS7nadcSdGeaZe8jfZx0a+T+8W+HfPED94PlH2DvHa8HX2K
P+3x6JifKLxX/MS+ivnuk/V8j/+jb/G/uH/MD5ts+dGNWk/4j/wd6Hh+dKPu
jz9t7yu5GuPZs83PUv8uzw+R/GScfAL3d6NdN9v6TXfWnO/LfuD7PZ8U+wv+
YL2ZX6dZb3Aor89k/mNfumbTU+NMDzXK3vTvBA+IerrIJyX+ef24w8b9flAe
CK+sxo/lH5317WlvHHvQMI0TP2X8stubW845e7XwSOKpjO/8+LsrtxiU64yz
7xlvnzh7x8rg9zKOHGZ80xd7sm0G9w3j7BPGh7526FWnD84T4/AZ4+DbyMPU
dGNf1+A8cT04C9eXH75/wysG55fxfN9r/NHsf++PGeRLxuFb+W8PPPbg24P8
zzj+gvy570/a+zOD6yW8Nc93kX/XdMCWXx+074S/VuOpGr9452zNowbtTcbx
dxnHn/nWdU/2dQ3aVXm9EuulfDHo/H6sr+L7jBuenZk/LX3C86p81aBx4yfh
H1wPXsA4eIjetzofej7xZd0/4uuZ+ffK7+R54NeMGz9rf3M9+duM5/558b7V
9dTz8/UsxiPenxneoPxEnlfN61utcdtPkkdcn+ePazzHE0Tn/Kjn5/yocYs/
ZIZ/yC7jeZyDxbjtZ+X9cD12AuPYCdD5ftLzseMYt3hIZniM5CXPw05g3OSJ
7AmuR04zjh6HzuWBno8dwLjFZzLDh2Qv8zzkPuMmz+T3cj16gXH0NnQuz/R8
9LbfT/Z8jB/JjuR69A7Pxx5n3OSr7EOup34g3m+c6FxeIx+5n8YtnqV8kfj8
Vj0POyLOt+S59DPXkycS+adDdK5v9HzyP7TeMb6WGb4nfc3zwE/jfpI+kT3E
9eT/RPnwsehcX+r5OX9r3OJ9meGNsid5HnhulJfSZ7JPuJ64dpT/S0Xn+l7P
J2+WcYs/ZoZ/yn7kedgrjJs+Fb7J9eDHjIP3Qef2ip6fy9diPWI8NDM8VvEI
nre07nOTbjxF+jszfS77l+vz/CCN5/pKdG5v6fm5firuH+OzmeHDwod43iYX
XvX00/3F782eUPyN64nXMU6+ud63ai/q+eQb6v4xXpwZXi28jOeRf8W42TPc
T/an2S/yB/L7Kb+LcbNniG8X8fhob8h/4H75/Gnc7A/i57qf2Qfqz8X9cn4p
3ifaC8TnZc+aPld9NPejnotx0+/E/3U/07/KI+V+4CqMmz4mv0D3M30pP5r7
xbr5/mT6k/wF3c/0m/xc7oefy7jpO/IjZH+b/lHfEe5HHDE+T/qI/Avdz/SF
8g7xL8BjuD94TJxv6RPyPXR/k/fKw+R++HWRvyT/ySfR/Uw+CyfifuRDxP0k
eU2+iu5n8lT9Brlfbr9q3OQr+TDyX0z+qf6d++X2usZNHpJvo/uZvFK8mPvl
/onGTX6pH0W0Nwq8lHgnzzP/RfmfjJv/kNdVFvk/Zr/rnCvGzX4WzsW42a+K
szNu9qPq8hk3e03+svKDor0kfxl+Bx+Hpp6B35s9ozwDxs2eYD40bvpc9bGM
mz5lPTRu+kz9HyWvQ319Ed9i32AveX9Zjzt4P92Yr696EuHZTmOHxzq9Xskn
8uWRT9DIo5ifMEM081eV6zPEzzH/gvNpX1M8N/az67T8+g77vhmZx+tjPGBC