-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransaction.h
1301 lines (1188 loc) · 41.1 KB
/
Transaction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#pragma once
#include <map>
#include "include/Context.h"
#include "include/int_types.h"
#include "include/buffer.h"
#include "osd/osd_types.h"
#define OPS_PER_PTR 32
void decode_str_str_map_to_bl(ceph::buffer::list::const_iterator& p, ceph::buffer::list *out);
void decode_str_set_to_bl(ceph::buffer::list::const_iterator& p, ceph::buffer::list *out);
/*********************************
* transaction
*
* A Transaction represents a sequence of primitive mutation
* operations.
*
* Three events in the life of a Transaction result in
* callbacks. Any Transaction can contain any number of callback
* objects (Context) for any combination of the three classes of
* callbacks:
*
* on_applied_sync, on_applied, and on_commit.
*
* The "on_applied" and "on_applied_sync" callbacks are invoked when
* the modifications requested by the Transaction are visible to
* subsequent ObjectStore operations, i.e., the results are
* readable. The only conceptual difference between on_applied and
* on_applied_sync is the specific thread and locking environment in
* which the callbacks operate. "on_applied_sync" is called
* directly by an ObjectStore execution thread. It is expected to
* execute quickly and must not acquire any locks of the calling
* environment. Conversely, "on_applied" is called from the separate
* Finisher thread, meaning that it can contend for calling
* environment locks. NB, on_applied and on_applied_sync are
* sometimes called on_readable and on_readable_sync.
*
* The "on_commit" callback is also called from the Finisher thread
* and indicates that all of the mutations have been durably
* committed to stable storage (i.e., are now software/hardware
* crashproof).
*
* At the implementation level, each mutation primitive (and its
* associated data) can be serialized to a single buffer. That
* serialization, however, does not copy any data, but (using the
* ceph::buffer::list library) will reference the original buffers. This
* implies that the buffer that contains the data being submitted
* must remain stable until the on_commit callback completes. In
* practice, ceph::buffer::list handles all of this for you and this
* subtlety is only relevant if you are referencing an existing
* buffer via buffer::raw_static.
*
* Some implementations of ObjectStore choose to implement their own
* form of journaling that uses the serialized form of a
* Transaction. This requires that the encode/decode logic properly
* version itself and handle version upgrades that might change the
* format of the encoded Transaction. This has already happened a
* couple of times and the Transaction object contains some helper
* variables that aid in this legacy decoding:
*
* sobject_encoding detects an older/simpler version of oid
* present in pre-bobtail versions of ceph. use_pool_override
* also detects a situation where the pool of an oid can be
* overridden for legacy operations/buffers. For non-legacy
* implementations of ObjectStore, neither of these fields are
* relevant.
*
*
* TRANSACTION ISOLATION
*
* Except as noted above, isolation is the responsibility of the
* caller. In other words, if any storage element (storage element
* == any of the four portions of an object as described above) is
* altered by a transaction (including deletion), the caller
* promises not to attempt to read that element while the
* transaction is pending (here pending means from the time of
* issuance until the "on_applied_sync" callback has been
* received). Violations of isolation need not be detected by
* ObjectStore and there is no corresponding error mechanism for
* reporting an isolation violation (crashing would be the
* appropriate way to report an isolation violation if detected).
*
* Enumeration operations may violate transaction isolation as
* described above when a storage element is being created or
* deleted as part of a transaction. In this case, ObjectStore is
* allowed to consider the enumeration operation to either precede
* or follow the violating transaction element. In other words, the
* presence/absence of the mutated element in the enumeration is
* entirely at the discretion of ObjectStore. The arbitrary ordering
* applies independently to each transaction element. For example,
* if a transaction contains two mutating elements "create A" and
* "delete B". And an enumeration operation is performed while this
* transaction is pending. It is permissible for ObjectStore to
* report any of the four possible combinations of the existence of
* A and B.
*
*/
namespace ceph::os {
class Transaction {
public:
enum {
OP_NOP = 0,
OP_CREATE = 7, // cid, oid
OP_TOUCH = 9, // cid, oid
OP_WRITE = 10, // cid, oid, offset, len, bl
OP_ZERO = 11, // cid, oid, offset, len
OP_TRUNCATE = 12, // cid, oid, len
OP_REMOVE = 13, // cid, oid
OP_SETATTR = 14, // cid, oid, attrname, bl
OP_SETATTRS = 15, // cid, oid, attrset
OP_RMATTR = 16, // cid, oid, attrname
OP_CLONE = 17, // cid, oid, newoid
OP_CLONERANGE = 18, // cid, oid, newoid, offset, len
OP_CLONERANGE2 = 30, // cid, oid, newoid, srcoff, len, dstoff
OP_TRIMCACHE = 19, // cid, oid, offset, len **DEPRECATED**
OP_MKCOLL = 20, // cid
OP_RMCOLL = 21, // cid
OP_COLL_ADD = 22, // cid, oldcid, oid
OP_COLL_REMOVE = 23, // cid, oid
OP_COLL_SETATTR = 24, // cid, attrname, bl
OP_COLL_RMATTR = 25, // cid, attrname
OP_COLL_SETATTRS = 26, // cid, attrset
OP_COLL_MOVE = 8, // newcid, oldcid, oid
OP_RMATTRS = 28, // cid, oid
OP_COLL_RENAME = 29, // cid, newcid
OP_OMAP_CLEAR = 31, // cid
OP_OMAP_SETKEYS = 32, // cid, attrset
OP_OMAP_RMKEYS = 33, // cid, keyset
OP_OMAP_SETHEADER = 34, // cid, header
OP_SPLIT_COLLECTION = 35, // cid, bits, destination
OP_SPLIT_COLLECTION2 = 36, /* cid, bits, destination
doesn't create the destination */
OP_OMAP_RMKEYRANGE = 37, // cid, oid, firstkey, lastkey
OP_COLL_MOVE_RENAME = 38, // oldcid, oldoid, newcid, newoid
OP_SETALLOCHINT = 39, // cid, oid, object_size, write_size
OP_COLL_HINT = 40, // cid, type, bl
OP_TRY_RENAME = 41, // oldcid, oldoid, newoid
OP_COLL_SET_BITS = 42, // cid, bits
OP_MERGE_COLLECTION = 43, // cid, destination
};
// Transaction hint type
enum {
COLL_HINT_EXPECTED_NUM_OBJECTS = 1,
};
struct Op {
ceph_le32 op;
ceph_le32 cid;
ceph_le32 oid;
ceph_le64 off;
ceph_le64 len;
ceph_le32 dest_cid;
ceph_le32 dest_oid; //OP_CLONE, OP_CLONERANGE
ceph_le64 dest_off; //OP_CLONERANGE
ceph_le32 hint; //OP_COLL_HINT,OP_SETALLOCHINT
ceph_le64 expected_object_size; //OP_SETALLOCHINT
ceph_le64 expected_write_size; //OP_SETALLOCHINT
ceph_le32 split_bits; //OP_SPLIT_COLLECTION2,OP_COLL_SET_BITS,
//OP_MKCOLL
ceph_le32 split_rem; //OP_SPLIT_COLLECTION2
} __attribute__ ((packed)) ;
struct TransactionData {
ceph_le64 ops;
ceph_le32 largest_data_len;
ceph_le32 largest_data_off;
ceph_le32 largest_data_off_in_data_bl;
ceph_le32 fadvise_flags;
TransactionData() noexcept :
ops(0),
largest_data_len(0),
largest_data_off(0),
largest_data_off_in_data_bl(0),
fadvise_flags(0) { }
// override default move operations to reset default values
TransactionData(TransactionData&& other) noexcept :
ops(other.ops),
largest_data_len(other.largest_data_len),
largest_data_off(other.largest_data_off),
largest_data_off_in_data_bl(other.largest_data_off_in_data_bl),
fadvise_flags(other.fadvise_flags) {
other.ops = 0;
other.largest_data_len = 0;
other.largest_data_off = 0;
other.largest_data_off_in_data_bl = 0;
other.fadvise_flags = 0;
}
TransactionData& operator=(TransactionData&& other) noexcept {
ops = other.ops;
largest_data_len = other.largest_data_len;
largest_data_off = other.largest_data_off;
largest_data_off_in_data_bl = other.largest_data_off_in_data_bl;
fadvise_flags = other.fadvise_flags;
other.ops = 0;
other.largest_data_len = 0;
other.largest_data_off = 0;
other.largest_data_off_in_data_bl = 0;
other.fadvise_flags = 0;
return *this;
}
TransactionData(const TransactionData& other) = default;
TransactionData& operator=(const TransactionData& other) = default;
void encode(ceph::buffer::list& bl) const {
bl.append((char*)this, sizeof(TransactionData));
}
void decode(ceph::buffer::list::const_iterator &bl) {
bl.copy(sizeof(TransactionData), (char*)this);
}
} __attribute__ ((packed)) ;
private:
TransactionData data;
std::map<coll_t, uint32_t> coll_index;
std::map<ghobject_t, uint32_t> object_index;
uint32_t coll_id = 0;
uint32_t object_id = 0;
ceph::buffer::list data_bl;
ceph::buffer::list op_bl;
std::list<Context *> on_applied;
std::list<Context *> on_commit;
std::list<Context *> on_applied_sync;
public:
Transaction() = default;
explicit Transaction(ceph::buffer::list::const_iterator &dp) {
decode(dp);
}
explicit Transaction(ceph::buffer::list &nbl) {
auto dp = nbl.cbegin();
decode(dp);
}
// override default move operations to reset default values
Transaction(Transaction&& other) noexcept :
data(std::move(other.data)),
coll_index(std::move(other.coll_index)),
object_index(std::move(other.object_index)),
coll_id(other.coll_id),
object_id(other.object_id),
data_bl(std::move(other.data_bl)),
op_bl(std::move(other.op_bl)),
on_applied(std::move(other.on_applied)),
on_commit(std::move(other.on_commit)),
on_applied_sync(std::move(other.on_applied_sync)) {
other.coll_id = 0;
other.object_id = 0;
}
Transaction& operator=(Transaction&& other) noexcept {
data = std::move(other.data);
coll_index = std::move(other.coll_index);
object_index = std::move(other.object_index);
coll_id = other.coll_id;
object_id = other.object_id;
data_bl = std::move(other.data_bl);
op_bl = std::move(other.op_bl);
on_applied = std::move(other.on_applied);
on_commit = std::move(other.on_commit);
on_applied_sync = std::move(other.on_applied_sync);
other.coll_id = 0;
other.object_id = 0;
return *this;
}
Transaction(const Transaction& other) = default;
Transaction& operator=(const Transaction& other) = default;
// expose object_index for FileStore::Op's benefit
const std::map<ghobject_t, uint32_t>& get_object_index() const {
return object_index;
}
/* Operations on callback contexts */
void register_on_applied(Context *c) {
if (!c) return;
on_applied.push_back(c);
}
void register_on_commit(Context *c) {
if (!c) return;
on_commit.push_back(c);
}
void register_on_applied_sync(Context *c) {
if (!c) return;
on_applied_sync.push_back(c);
}
void register_on_complete(Context *c) {
if (!c) return;
RunOnDeleteRef _complete (std::make_shared<RunOnDelete>(c));
register_on_applied(new ContainerContext<RunOnDeleteRef>(_complete));
register_on_commit(new ContainerContext<RunOnDeleteRef>(_complete));
}
bool has_contexts() const {
return
!on_commit.empty() ||
!on_applied.empty() ||
!on_applied_sync.empty();
}
static void collect_contexts(
std::vector<Transaction>& t,
Context **out_on_applied,
Context **out_on_commit,
Context **out_on_applied_sync) {
ceph_assert(out_on_applied);
ceph_assert(out_on_commit);
ceph_assert(out_on_applied_sync);
std::list<Context *> on_applied, on_commit, on_applied_sync;
for (auto& i : t) {
on_applied.splice(on_applied.end(), i.on_applied);
on_commit.splice(on_commit.end(), i.on_commit);
on_applied_sync.splice(on_applied_sync.end(), i.on_applied_sync);
}
*out_on_applied = C_Contexts::list_to_context(on_applied);
*out_on_commit = C_Contexts::list_to_context(on_commit);
*out_on_applied_sync = C_Contexts::list_to_context(on_applied_sync);
}
static void collect_contexts(
std::vector<Transaction>& t,
std::list<Context*> *out_on_applied,
std::list<Context*> *out_on_commit,
std::list<Context*> *out_on_applied_sync) {
ceph_assert(out_on_applied);
ceph_assert(out_on_commit);
ceph_assert(out_on_applied_sync);
for (auto& i : t) {
out_on_applied->splice(out_on_applied->end(), i.on_applied);
out_on_commit->splice(out_on_commit->end(), i.on_commit);
out_on_applied_sync->splice(out_on_applied_sync->end(),
i.on_applied_sync);
}
}
static Context *collect_all_contexts(
Transaction& t) {
std::list<Context*> contexts;
contexts.splice(contexts.end(), t.on_applied);
contexts.splice(contexts.end(), t.on_commit);
contexts.splice(contexts.end(), t.on_applied_sync);
return C_Contexts::list_to_context(contexts);
}
Context *get_on_applied() {
return C_Contexts::list_to_context(on_applied);
}
Context *get_on_commit() {
return C_Contexts::list_to_context(on_commit);
}
Context *get_on_applied_sync() {
return C_Contexts::list_to_context(on_applied_sync);
}
void set_fadvise_flags(uint32_t flags) {
data.fadvise_flags = flags;
}
void set_fadvise_flag(uint32_t flag) {
data.fadvise_flags = data.fadvise_flags | flag;
}
uint32_t get_fadvise_flags() { return data.fadvise_flags; }
void swap(Transaction& other) noexcept {
std::swap(data, other.data);
std::swap(on_applied, other.on_applied);
std::swap(on_commit, other.on_commit);
std::swap(on_applied_sync, other.on_applied_sync);
std::swap(coll_index, other.coll_index);
std::swap(object_index, other.object_index);
std::swap(coll_id, other.coll_id);
std::swap(object_id, other.object_id);
op_bl.swap(other.op_bl);
data_bl.swap(other.data_bl);
}
void _update_op(Op* op,
std::vector<uint32_t> &cm,
std::vector<uint32_t> &om) {
switch (op->op) {
case OP_NOP:
break;
case OP_CREATE:
case OP_TOUCH:
case OP_REMOVE:
case OP_SETATTR:
case OP_SETATTRS:
case OP_RMATTR:
case OP_RMATTRS:
case OP_COLL_REMOVE:
case OP_OMAP_CLEAR:
case OP_OMAP_SETKEYS:
case OP_OMAP_RMKEYS:
case OP_OMAP_RMKEYRANGE:
case OP_OMAP_SETHEADER:
case OP_WRITE:
case OP_ZERO:
case OP_TRUNCATE:
case OP_SETALLOCHINT:
ceph_assert(op->cid < cm.size());
ceph_assert(op->oid < om.size());
op->cid = cm[op->cid];
op->oid = om[op->oid];
break;
case OP_CLONERANGE2:
case OP_CLONE:
ceph_assert(op->cid < cm.size());
ceph_assert(op->oid < om.size());
ceph_assert(op->dest_oid < om.size());
op->cid = cm[op->cid];
op->oid = om[op->oid];
op->dest_oid = om[op->dest_oid];
break;
case OP_MKCOLL:
case OP_RMCOLL:
case OP_COLL_SETATTR:
case OP_COLL_RMATTR:
case OP_COLL_SETATTRS:
case OP_COLL_HINT:
case OP_COLL_SET_BITS:
ceph_assert(op->cid < cm.size());
op->cid = cm[op->cid];
break;
case OP_COLL_ADD:
ceph_assert(op->cid < cm.size());
ceph_assert(op->oid < om.size());
ceph_assert(op->dest_cid < om.size());
op->cid = cm[op->cid];
op->dest_cid = cm[op->dest_cid];
op->oid = om[op->oid];
break;
case OP_COLL_MOVE_RENAME:
ceph_assert(op->cid < cm.size());
ceph_assert(op->oid < om.size());
ceph_assert(op->dest_cid < cm.size());
ceph_assert(op->dest_oid < om.size());
op->cid = cm[op->cid];
op->oid = om[op->oid];
op->dest_cid = cm[op->dest_cid];
op->dest_oid = om[op->dest_oid];
break;
case OP_TRY_RENAME:
ceph_assert(op->cid < cm.size());
ceph_assert(op->oid < om.size());
ceph_assert(op->dest_oid < om.size());
op->cid = cm[op->cid];
op->oid = om[op->oid];
op->dest_oid = om[op->dest_oid];
break;
case OP_SPLIT_COLLECTION2:
ceph_assert(op->cid < cm.size());
ceph_assert(op->dest_cid < cm.size());
op->cid = cm[op->cid];
op->dest_cid = cm[op->dest_cid];
break;
case OP_MERGE_COLLECTION:
ceph_assert(op->cid < cm.size());
ceph_assert(op->dest_cid < cm.size());
op->cid = cm[op->cid];
op->dest_cid = cm[op->dest_cid];
break;
default:
ceph_abort_msg("Unknown OP");
}
}
void _update_op_bl(
ceph::buffer::list& bl,
std::vector<uint32_t> &cm,
std::vector<uint32_t> &om) {
for (auto& bp : bl.buffers()) {
ceph_assert(bp.length() % sizeof(Op) == 0);
char* raw_p = const_cast<char*>(bp.c_str());
char* raw_end = raw_p + bp.length();
while (raw_p < raw_end) {
_update_op(reinterpret_cast<Op*>(raw_p), cm, om);
raw_p += sizeof(Op);
}
}
}
/// Append the operations of the parameter to this Transaction. Those operations are removed from the parameter Transaction
void append(Transaction& other) {
data.ops = data.ops + other.data.ops;
if (other.data.largest_data_len > data.largest_data_len) {
data.largest_data_len = other.data.largest_data_len;
data.largest_data_off = other.data.largest_data_off;
data.largest_data_off_in_data_bl = data_bl.length() + other.data.largest_data_off_in_data_bl;
}
data.fadvise_flags = data.fadvise_flags | other.data.fadvise_flags;
on_applied.splice(on_applied.end(), other.on_applied);
on_commit.splice(on_commit.end(), other.on_commit);
on_applied_sync.splice(on_applied_sync.end(), other.on_applied_sync);
//append coll_index & object_index
std::vector<uint32_t> cm(other.coll_index.size());
std::map<coll_t, uint32_t>::iterator coll_index_p;
for (coll_index_p = other.coll_index.begin();
coll_index_p != other.coll_index.end();
++coll_index_p) {
cm[coll_index_p->second] = _get_coll_id(coll_index_p->first);
}
std::vector<uint32_t> om(other.object_index.size());
std::map<ghobject_t, uint32_t>::iterator object_index_p;
for (object_index_p = other.object_index.begin();
object_index_p != other.object_index.end();
++object_index_p) {
om[object_index_p->second] = _get_object_id(object_index_p->first);
}
//the other.op_bl SHOULD NOT be changes during append operation,
//we use additional ceph::buffer::list to avoid this problem
ceph::buffer::list other_op_bl;
{
ceph::buffer::ptr other_op_bl_ptr(other.op_bl.length());
other.op_bl.begin().copy(other.op_bl.length(), other_op_bl_ptr.c_str());
other_op_bl.append(std::move(other_op_bl_ptr));
}
//update other_op_bl with cm & om
//When the other is appended to current transaction, all coll_index and
//object_index in other.op_buffer should be updated by new index of the
//combined transaction
_update_op_bl(other_op_bl, cm, om);
//append op_bl
op_bl.append(other_op_bl);
//append data_bl
data_bl.append(other.data_bl);
}
/** Inquires about the Transaction as a whole. */
/// How big is the encoded Transaction buffer?
uint64_t get_encoded_bytes() {
//layout: data_bl + op_bl + coll_index + object_index + data
// coll_index size, object_index size and sizeof(transaction_data)
// all here, so they may be computed at compile-time
size_t final_size = sizeof(__u32) * 2 + sizeof(data);
// coll_index second and object_index second
final_size += (coll_index.size() + object_index.size()) * sizeof(__u32);
// coll_index first
for (auto p = coll_index.begin(); p != coll_index.end(); ++p) {
final_size += p->first.encoded_size();
}
// object_index first
for (auto p = object_index.begin(); p != object_index.end(); ++p) {
final_size += p->first.encoded_size();
}
return data_bl.length() +
op_bl.length() +
final_size;
}
/// Retain old version for regression testing purposes
uint64_t get_encoded_bytes_test() {
using ceph::encode;
//layout: data_bl + op_bl + coll_index + object_index + data
ceph::buffer::list bl;
encode(coll_index, bl);
encode(object_index, bl);
return data_bl.length() +
op_bl.length() +
bl.length() +
sizeof(data);
}
uint64_t get_num_bytes() {
return get_encoded_bytes();
}
/// Size of largest data buffer to the "write" operation encountered so far
uint32_t get_data_length() {
return data.largest_data_len;
}
/// offset within the encoded buffer to the start of the largest data buffer that's encoded
uint32_t get_data_offset() {
if (data.largest_data_off_in_data_bl) {
return data.largest_data_off_in_data_bl +
sizeof(__u8) + // encode struct_v
sizeof(__u8) + // encode compat_v
sizeof(__u32) + // encode len
sizeof(__u32); // data_bl len
}
return 0; // none
}
/// offset of buffer as aligned to destination within object.
int get_data_alignment() {
if (!data.largest_data_len)
return 0;
return (0 - get_data_offset()) & ~CEPH_PAGE_MASK;
}
/// Is the Transaction empty (no operations)
bool empty() {
return !data.ops;
}
/// Number of operations in the transaction
int get_num_ops() {
return data.ops;
}
/**
* iterator
*
* Helper object to parse Transactions.
*
* ObjectStore instances use this object to step down the encoded
* buffer decoding operation codes and parameters as we go.
*
*/
class iterator {
Transaction *t;
uint64_t ops;
char* op_buffer_p;
ceph::buffer::list::const_iterator data_bl_p;
public:
std::vector<coll_t> colls;
std::vector<ghobject_t> objects;
private:
explicit iterator(Transaction *t)
: t(t),
data_bl_p(t->data_bl.cbegin()),
colls(t->coll_index.size()),
objects(t->object_index.size()) {
ops = t->data.ops;
op_buffer_p = t->op_bl.c_str();
std::map<coll_t, uint32_t>::iterator coll_index_p;
for (coll_index_p = t->coll_index.begin();
coll_index_p != t->coll_index.end();
++coll_index_p) {
colls[coll_index_p->second] = coll_index_p->first;
}
std::map<ghobject_t, uint32_t>::iterator object_index_p;
for (object_index_p = t->object_index.begin();
object_index_p != t->object_index.end();
++object_index_p) {
objects[object_index_p->second] = object_index_p->first;
}
}
friend class Transaction;
public:
bool have_op() {
return ops > 0;
}
Op* decode_op() {
ceph_assert(ops > 0);
Op* op = reinterpret_cast<Op*>(op_buffer_p);
op_buffer_p += sizeof(Op);
ops--;
return op;
}
std::string decode_string() {
using ceph::decode;
std::string s;
decode(s, data_bl_p);
return s;
}
void decode_bp(ceph::buffer::ptr& bp) {
using ceph::decode;
decode(bp, data_bl_p);
}
void decode_bl(ceph::buffer::list& bl) {
using ceph::decode;
decode(bl, data_bl_p);
}
void decode_attrset(std::map<std::string,ceph::buffer::ptr>& aset) {
using ceph::decode;
decode(aset, data_bl_p);
}
void decode_attrset(std::map<std::string,ceph::buffer::list>& aset) {
using ceph::decode;
decode(aset, data_bl_p);
}
void decode_attrset_bl(ceph::buffer::list *pbl) {
decode_str_str_map_to_bl(data_bl_p, pbl);
}
void decode_keyset(std::set<std::string> &keys){
using ceph::decode;
decode(keys, data_bl_p);
}
void decode_keyset_bl(ceph::buffer::list *pbl){
decode_str_set_to_bl(data_bl_p, pbl);
}
const ghobject_t &get_oid(uint32_t oid_id) {
ceph_assert(oid_id < objects.size());
return objects[oid_id];
}
const coll_t &get_cid(uint32_t cid_id) {
ceph_assert(cid_id < colls.size());
return colls[cid_id];
}
uint32_t get_fadvise_flags() const {
return t->get_fadvise_flags();
}
const std::vector<ghobject_t> &get_objects() const {
return objects;
}
};
iterator begin() {
return iterator(this);
}
private:
void _build_actions_from_tbl();
/**
* Helper functions to encode the various mutation elements of a
* transaction. These are 1:1 with the operation codes (see
* enumeration above). These routines ensure that the
* encoder/creator of a transaction gets the right data in the
* right place. Sadly, there's no corresponding version nor any
* form of seat belts for the decoder.
*/
Op* _get_next_op() {
if (op_bl.get_append_buffer_unused_tail_length() < sizeof(Op)) {
op_bl.reserve(sizeof(Op) * OPS_PER_PTR);
}
// append_hole ensures bptr merging. Even huge number of ops
// shouldn't result in overpopulating bl::_buffers.
char* const p = op_bl.append_hole(sizeof(Op)).c_str();
memset(p, 0, sizeof(Op));
return reinterpret_cast<Op*>(p);
}
uint32_t _get_coll_id(const coll_t& coll) {
std::map<coll_t, uint32_t>::iterator c = coll_index.find(coll);
if (c != coll_index.end())
return c->second;
uint32_t index_id = coll_id++;
coll_index[coll] = index_id;
return index_id;
}
uint32_t _get_object_id(const ghobject_t& oid) {
std::map<ghobject_t, uint32_t>::iterator o = object_index.find(oid);
if (o != object_index.end())
return o->second;
uint32_t index_id = object_id++;
object_index[oid] = index_id;
return index_id;
}
public:
/// noop. 'nuf said
void nop() {
Op* _op = _get_next_op();
_op->op = OP_NOP;
data.ops = data.ops + 1;
}
/**
* create
*
* create an object that does not yet exist
* (behavior is undefined if the object already exists)
*/
void create(const coll_t& cid, const ghobject_t& oid) {
Op* _op = _get_next_op();
_op->op = OP_CREATE;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
data.ops = data.ops + 1;
}
/**
* touch
*
* Ensure the existance of an object in a collection. Create an
* empty object if necessary
*/
void touch(const coll_t& cid, const ghobject_t& oid) {
Op* _op = _get_next_op();
_op->op = OP_TOUCH;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
data.ops = data.ops + 1;
}
/**
* Write data to an offset within an object. If the object is too
* small, it is expanded as needed. It is possible to specify an
* offset beyond the current end of an object and it will be
* expanded as needed. Simple implementations of ObjectStore will
* just zero the data between the old end of the object and the
* newly provided data. More sophisticated implementations of
* ObjectStore will omit the untouched data and store it as a
* "hole" in the file.
*
* Note that a 0-length write does not affect the size of the object.
*/
void write(const coll_t& cid, const ghobject_t& oid, uint64_t off, uint64_t len,
const ceph::buffer::list& write_data, uint32_t flags = 0) {
using ceph::encode;
uint32_t orig_len = data_bl.length();
Op* _op = _get_next_op();
_op->op = OP_WRITE;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
_op->off = off;
_op->len = len;
encode(write_data, data_bl);
ceph_assert(len == write_data.length());
data.fadvise_flags = data.fadvise_flags | flags;
if (write_data.length() > data.largest_data_len) {
data.largest_data_len = write_data.length();
data.largest_data_off = off;
data.largest_data_off_in_data_bl = orig_len + sizeof(__u32); // we are about to
}
data.ops = data.ops + 1;
}
/**
* zero out the indicated byte range within an object. Some
* ObjectStore instances may optimize this to release the
* underlying storage space.
*
* If the zero range extends beyond the end of the object, the object
* size is extended, just as if we were writing a buffer full of zeros.
* EXCEPT if the length is 0, in which case (just like a 0-length write)
* we do not adjust the object size.
*/
void zero(const coll_t& cid, const ghobject_t& oid, uint64_t off, uint64_t len) {
Op* _op = _get_next_op();
_op->op = OP_ZERO;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
_op->off = off;
_op->len = len;
data.ops = data.ops + 1;
}
/// Discard all data in the object beyond the specified size.
void truncate(const coll_t& cid, const ghobject_t& oid, uint64_t off) {
Op* _op = _get_next_op();
_op->op = OP_TRUNCATE;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
_op->off = off;
data.ops = data.ops + 1;
}
/// Remove an object. All four parts of the object are removed.
void remove(const coll_t& cid, const ghobject_t& oid) {
Op* _op = _get_next_op();
_op->op = OP_REMOVE;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
data.ops = data.ops + 1;
}
/// Set an xattr of an object
void setattr(const coll_t& cid, const ghobject_t& oid, const char* name, ceph::buffer::list& val) {
std::string n(name);
setattr(cid, oid, n, val);
}
/// Set an xattr of an object
void setattr(const coll_t& cid, const ghobject_t& oid, const std::string& s, ceph::buffer::list& val) {
using ceph::encode;
Op* _op = _get_next_op();
_op->op = OP_SETATTR;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
encode(s, data_bl);
encode(val, data_bl);
data.ops = data.ops + 1;
}
/// Set multiple xattrs of an object
void setattrs(const coll_t& cid,
const ghobject_t& oid,
const std::map<std::string,ceph::buffer::ptr,std::less<>>& attrset) {
using ceph::encode;
Op* _op = _get_next_op();
_op->op = OP_SETATTRS;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
encode(attrset, data_bl);
data.ops = data.ops + 1;
}
/// Set multiple xattrs of an object
void setattrs(const coll_t& cid,
const ghobject_t& oid,
const std::map<std::string,ceph::buffer::list,std::less<>>& attrset) {
using ceph::encode;
Op* _op = _get_next_op();
_op->op = OP_SETATTRS;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
encode(attrset, data_bl);
data.ops = data.ops + 1;
}
/// remove an xattr from an object
void rmattr(const coll_t& cid, const ghobject_t& oid, const char *name) {
std::string n(name);
rmattr(cid, oid, n);
}
/// remove an xattr from an object
void rmattr(const coll_t& cid, const ghobject_t& oid, const std::string& s) {
using ceph::encode;
Op* _op = _get_next_op();
_op->op = OP_RMATTR;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
encode(s, data_bl);
data.ops = data.ops + 1;
}
/// remove all xattrs from an object
void rmattrs(const coll_t& cid, const ghobject_t& oid) {
Op* _op = _get_next_op();
_op->op = OP_RMATTRS;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
data.ops = data.ops + 1;
}
/**
* Clone an object into another object.
*
* Low-cost (e.g., O(1)) cloning (if supported) is best, but
* fallback to an O(n) copy is allowed. All four parts of the
* object are cloned (data, xattrs, omap header, omap
* entries).
*
* The destination named object may already exist, in
* which case its previous contents are discarded.
*/
void clone(const coll_t& cid, const ghobject_t& oid,
const ghobject_t& noid) {
Op* _op = _get_next_op();
_op->op = OP_CLONE;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
_op->dest_oid = _get_object_id(noid);
data.ops = data.ops + 1;
}
/**
* Clone a byte range from one object to another.
*
* The data portion of the destination object receives a copy of a
* portion of the data from the source object. None of the other
* three parts of an object is copied from the source.
*
* The destination object size may be extended to the dstoff + len.
*
* The source range *must* overlap with the source object data. If it does
* not the result is undefined.
*/
void clone_range(const coll_t& cid, const ghobject_t& oid,
const ghobject_t& noid,
uint64_t srcoff, uint64_t srclen, uint64_t dstoff) {
Op* _op = _get_next_op();
_op->op = OP_CLONERANGE2;
_op->cid = _get_coll_id(cid);
_op->oid = _get_object_id(oid);
_op->dest_oid = _get_object_id(noid);