forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariational_autoencoder_deconv.py
173 lines (148 loc) · 6.67 KB
/
variational_autoencoder_deconv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''This script demonstrates how to build a variational autoencoder
with Keras and deconvolution layers.
Reference: "Auto-Encoding Variational Bayes" https://arxiv.org/abs/1312.6114
'''
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Flatten, Reshape
from keras.layers import Convolution2D, Deconvolution2D
from keras.models import Model
from keras import backend as K
from keras import objectives
from keras.datasets import mnist
# input image dimensions
img_rows, img_cols, img_chns = 28, 28, 1
# number of convolutional filters to use
nb_filters = 64
# convolution kernel size
nb_conv = 3
batch_size = 100
if K.image_dim_ordering() == 'th':
original_img_size = (img_chns, img_rows, img_cols)
else:
original_img_size = (img_rows, img_cols, img_chns)
latent_dim = 2
intermediate_dim = 128
epsilon_std = 1.0
nb_epoch = 5
x = Input(batch_shape=(batch_size,) + original_img_size)
conv_1 = Convolution2D(img_chns, 2, 2, border_mode='same', activation='relu')(x)
conv_2 = Convolution2D(nb_filters, 2, 2,
border_mode='same', activation='relu',
subsample=(2, 2))(conv_1)
conv_3 = Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='same', activation='relu',
subsample=(1, 1))(conv_2)
conv_4 = Convolution2D(nb_filters, nb_conv, nb_conv,
border_mode='same', activation='relu',
subsample=(1, 1))(conv_3)
flat = Flatten()(conv_4)
hidden = Dense(intermediate_dim, activation='relu')(flat)
z_mean = Dense(latent_dim)(hidden)
z_log_var = Dense(latent_dim)(hidden)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(batch_size, latent_dim),
mean=0., std=epsilon_std)
return z_mean + K.exp(z_log_var) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
# so you could write `Lambda(sampling)([z_mean, z_log_var])`
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_hid = Dense(intermediate_dim, activation='relu')
decoder_upsample = Dense(nb_filters * 14 * 14, activation='relu')
if K.image_dim_ordering() == 'th':
output_shape = (batch_size, nb_filters, 14, 14)
else:
output_shape = (batch_size, 14, 14, nb_filters)
decoder_reshape = Reshape(output_shape[1:])
decoder_deconv_1 = Deconvolution2D(nb_filters, nb_conv, nb_conv,
output_shape,
border_mode='same',
subsample=(1, 1),
activation='relu')
decoder_deconv_2 = Deconvolution2D(nb_filters, nb_conv, nb_conv,
output_shape,
border_mode='same',
subsample=(1, 1),
activation='relu')
if K.image_dim_ordering() == 'th':
output_shape = (batch_size, nb_filters, 29, 29)
else:
output_shape = (batch_size, 29, 29, nb_filters)
decoder_deconv_3_upsamp = Deconvolution2D(nb_filters, 2, 2,
output_shape,
border_mode='valid',
subsample=(2, 2),
activation='relu')
decoder_mean_squash = Convolution2D(img_chns, 2, 2,
border_mode='valid',
activation='sigmoid')
hid_decoded = decoder_hid(z)
up_decoded = decoder_upsample(hid_decoded)
reshape_decoded = decoder_reshape(up_decoded)
deconv_1_decoded = decoder_deconv_1(reshape_decoded)
deconv_2_decoded = decoder_deconv_2(deconv_1_decoded)
x_decoded_relu = decoder_deconv_3_upsamp(deconv_2_decoded)
x_decoded_mean_squash = decoder_mean_squash(x_decoded_relu)
def vae_loss(x, x_decoded_mean):
# NOTE: binary_crossentropy expects a batch_size by dim
# for x and x_decoded_mean, so we MUST flatten these!
x = K.flatten(x)
x_decoded_mean = K.flatten(x_decoded_mean)
xent_loss = img_rows * img_cols * objectives.binary_crossentropy(x, x_decoded_mean)
kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return xent_loss + kl_loss
vae = Model(x, x_decoded_mean_squash)
vae.compile(optimizer='rmsprop', loss=vae_loss)
vae.summary()
# train the VAE on MNIST digits
(x_train, _), (x_test, y_test) = mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape((x_train.shape[0],) + original_img_size)
x_test = x_test.astype('float32') / 255.
x_test = x_test.reshape((x_test.shape[0],) + original_img_size)
print('x_train.shape:', x_train.shape)
vae.fit(x_train, x_train,
shuffle=True,
nb_epoch=nb_epoch,
batch_size=batch_size,
validation_data=(x_test, x_test))
# build a model to project inputs on the latent space
encoder = Model(x, z_mean)
# display a 2D plot of the digit classes in the latent space
x_test_encoded = encoder.predict(x_test, batch_size=batch_size)
plt.figure(figsize=(6, 6))
plt.scatter(x_test_encoded[:, 0], x_test_encoded[:, 1], c=y_test)
plt.colorbar()
plt.show()
# build a digit generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_hid_decoded = decoder_hid(decoder_input)
_up_decoded = decoder_upsample(_hid_decoded)
_reshape_decoded = decoder_reshape(_up_decoded)
_deconv_1_decoded = decoder_deconv_1(_reshape_decoded)
_deconv_2_decoded = decoder_deconv_2(_deconv_1_decoded)
_x_decoded_relu = decoder_deconv_3_upsamp(_deconv_2_decoded)
_x_decoded_mean_squash = decoder_mean_squash(_x_decoded_relu)
generator = Model(decoder_input, _x_decoded_mean_squash)
# display a 2D manifold of the digits
n = 15 # figure with 15x15 digits
digit_size = 28
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, 2)
x_decoded = generator.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure, cmap='Greys_r')
plt.show()