forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplex.jl
825 lines (740 loc) · 23.8 KB
/
complex.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
# This file is a part of Julia. License is MIT: http://julialang.org/license
immutable Complex{T<:Real} <: Number
re::T
im::T
end
Complex(x::Real, y::Real) = Complex(promote(x,y)...)
Complex(x::Real) = Complex(x, zero(x))
const im = Complex(false,true)
typealias Complex128 Complex{Float64}
typealias Complex64 Complex{Float32}
typealias Complex32 Complex{Float16}
convert{T<:Real}(::Type{Complex{T}}, x::Real) = Complex{T}(x,0)
convert{T<:Real}(::Type{Complex{T}}, z::Complex) = Complex{T}(real(z),imag(z))
convert{T<:Real}(::Type{T}, z::Complex) =
isreal(z) ? convert(T,real(z)) : throw(InexactError())
convert(::Type{Complex}, z::Complex) = z
convert(::Type{Complex}, x::Real) = Complex(x)
promote_rule{T<:Real,S<:Real}(::Type{Complex{T}}, ::Type{S}) =
Complex{promote_type(T,S)}
promote_rule{T<:Real,S<:Real}(::Type{Complex{T}}, ::Type{Complex{S}}) =
Complex{promote_type(T,S)}
promote_op{T<:Real,S<:Real}(op, ::Type{Complex{T}}, ::Type{Complex{S}}) =
Complex{promote_op(op,T,S)}
promote_op{T<:Real,S<:Real}(op, ::Type{Complex{T}}, ::Type{S}) =
Complex{promote_op(op,T,S)}
promote_op{T<:Real,S<:Real}(op, ::Type{T}, ::Type{Complex{S}}) =
Complex{promote_op(op,T,S)}
promote_op{T<:Integer,S<:Integer}(::typeof(^), ::Type{T}, ::Type{Complex{S}}) =
Complex{Float64}
promote_op{T<:Integer,S<:Integer}(::typeof(.^), ::Type{T}, ::Type{Complex{S}}) =
Complex{Float64}
widen{T}(::Type{Complex{T}}) = Complex{widen(T)}
real(z::Complex) = z.re
imag(z::Complex) = z.im
real(x::Real) = x
imag(x::Real) = zero(x)
reim(z) = (real(z), imag(z))
real{T<:Real}(::Type{T}) = T
real{T<:Real}(::Type{Complex{T}}) = T
complex{T<:Real}(::Type{T}) = Complex{T}
complex{T<:Real}(::Type{Complex{T}}) = Complex{T}
isreal(x::Real) = true
isreal(z::Complex) = imag(z) == 0
isimag(z::Number) = real(z) == 0
isinteger(z::Complex) = isreal(z) & isinteger(real(z))
isfinite(z::Complex) = isfinite(real(z)) & isfinite(imag(z))
isnan(z::Complex) = isnan(real(z)) | isnan(imag(z))
isinf(z::Complex) = isinf(real(z)) | isinf(imag(z))
complex(x::Real, y::Real) = Complex(x, y)
complex(x::Real) = Complex(x)
complex(z::Complex) = z
flipsign(x::Complex, y::Real) = ifelse(signbit(y), -x, x)
function show(io::IO, z::Complex)
r, i = reim(z)
compact = limit_output(io)
showcompact_lim(io, r)
if signbit(i) && !isnan(i)
i = -i
print(io, compact ? "-" : " - ")
else
print(io, compact ? "+" : " + ")
end
showcompact_lim(io, i)
if !(isa(i,Integer) && !isa(i,Bool) || isa(i,AbstractFloat) && isfinite(i))
print(io, "*")
end
print(io, "im")
end
show(io::IO, z::Complex{Bool}) =
print(io, z == im ? "im" : "Complex($(z.re),$(z.im))")
function read{T<:Real}(s::IO, ::Type{Complex{T}})
r = read(s,T)
i = read(s,T)
Complex{T}(r,i)
end
function write(s::IO, z::Complex)
write(s,real(z),imag(z))
end
## equality and hashing of complex numbers ##
==(z::Complex, w::Complex) = (real(z) == real(w)) & (imag(z) == imag(w))
==(z::Complex, x::Real) = isreal(z) && real(z) == x
==(x::Real, z::Complex) = isreal(z) && real(z) == x
isequal(z::Complex, w::Complex) = isequal(real(z),real(w)) & isequal(imag(z),imag(w))
if UInt === UInt64
const h_imag = 0x32a7a07f3e7cd1f9
else
const h_imag = 0x3e7cd1f9
end
const hash_0_imag = hash(0, h_imag)
function hash(z::Complex, h::UInt)
# TODO: with default argument specialization, this would be better:
# hash(real(z), h $ hash(imag(z), h $ h_imag) $ hash(0, h $ h_imag))
hash(real(z), h $ hash(imag(z), h_imag) $ hash_0_imag)
end
## generic functions of complex numbers ##
conj(z::Complex) = Complex(real(z),-imag(z))
abs(z::Complex) = hypot(real(z), imag(z))
abs2(z::Complex) = real(z)*real(z) + imag(z)*imag(z)
inv(z::Complex) = conj(z)/abs2(z)
inv{T<:Integer}(z::Complex{T}) = inv(float(z))
-(z::Complex) = Complex(-real(z), -imag(z))
+(z::Complex, w::Complex) = Complex(real(z) + real(w), imag(z) + imag(w))
-(z::Complex, w::Complex) = Complex(real(z) - real(w), imag(z) - imag(w))
*(z::Complex, w::Complex) = Complex(real(z) * real(w) - imag(z) * imag(w),
real(z) * imag(w) + imag(z) * real(w))
muladd(z::Complex, w::Complex, x::Complex) =
Complex(muladd(real(z), real(w), real(x)) - imag(z)*imag(w), # TODO: use mulsub given #15985
muladd(real(z), imag(w), muladd(imag(z), real(w), imag(x))))
# handle Bool and Complex{Bool}
# avoid type signature ambiguity warnings
+(x::Bool, z::Complex{Bool}) = Complex(x + real(z), imag(z))
+(z::Complex{Bool}, x::Bool) = Complex(real(z) + x, imag(z))
-(x::Bool, z::Complex{Bool}) = Complex(x - real(z), - imag(z))
-(z::Complex{Bool}, x::Bool) = Complex(real(z) - x, imag(z))
*(x::Bool, z::Complex{Bool}) = Complex(x * real(z), x * imag(z))
*(z::Complex{Bool}, x::Bool) = Complex(real(z) * x, imag(z) * x)
+(x::Bool, z::Complex) = Complex(x + real(z), imag(z))
+(z::Complex, x::Bool) = Complex(real(z) + x, imag(z))
-(x::Bool, z::Complex) = Complex(x - real(z), - imag(z))
-(z::Complex, x::Bool) = Complex(real(z) - x, imag(z))
*(x::Bool, z::Complex) = Complex(x * real(z), x * imag(z))
*(z::Complex, x::Bool) = Complex(real(z) * x, imag(z) * x)
+(x::Real, z::Complex{Bool}) = Complex(x + real(z), imag(z))
+(z::Complex{Bool}, x::Real) = Complex(real(z) + x, imag(z))
function -(x::Real, z::Complex{Bool})
# we don't want the default type for -(Bool)
re = x-real(z)
Complex(re, - oftype(re, imag(z)))
end
-(z::Complex{Bool}, x::Real) = Complex(real(z) - x, imag(z))
*(x::Real, z::Complex{Bool}) = Complex(x * real(z), x * imag(z))
*(z::Complex{Bool}, x::Real) = Complex(real(z) * x, imag(z) * x)
# adding or multiplying real & complex is common
+(x::Real, z::Complex) = Complex(x + real(z), imag(z))
+(z::Complex, x::Real) = Complex(x + real(z), imag(z))
function -(x::Real, z::Complex)
# we don't want the default type for -(Bool)
re = x - real(z)
Complex(re, - oftype(re, imag(z)))
end
-(z::Complex, x::Real) = Complex(real(z) - x, imag(z))
*(x::Real, z::Complex) = Complex(x * real(z), x * imag(z))
*(z::Complex, x::Real) = Complex(x * real(z), x * imag(z))
muladd(x::Real, z::Complex, y::Number) = muladd(z, x, y)
muladd(z::Complex, x::Real, y::Real) = Complex(muladd(real(z),x,y), imag(z)*x)
muladd(z::Complex, x::Real, w::Complex) =
Complex(muladd(real(z),x,real(w)), muladd(imag(z),x,imag(w)))
muladd(x::Real, y::Real, z::Complex) = Complex(muladd(x,y,real(z)), imag(z))
muladd(z::Complex, w::Complex, x::Real) =
Complex(muladd(real(z), real(w), x) - imag(z)*imag(w), # TODO: use mulsub given #15985
muladd(real(z), imag(w), imag(z) * real(w)))
/(a::Real, z::Complex) = a*inv(z)
/(z::Complex, x::Real) = Complex(real(z)/x, imag(z)/x)
function /{T<:Real}(a::Complex{T}, b::Complex{T})
are = real(a); aim = imag(a); bre = real(b); bim = imag(b)
if abs(bre) <= abs(bim)
if isinf(bre) && isinf(bim)
r = sign(bre)/sign(bim)
else
r = bre / bim
end
den = bim + r*bre
Complex((are*r + aim)/den, (aim*r - are)/den)
else
if isinf(bre) && isinf(bim)
r = sign(bim)/sign(bre)
else
r = bim / bre
end
den = bre + r*bim
Complex((are + aim*r)/den, (aim - are*r)/den)
end
end
inv{T<:Union{Float16,Float32}}(z::Complex{T}) =
oftype(z, conj(widen(z))/abs2(widen(z)))
/{T<:Union{Float16,Float32}}(z::Complex{T}, w::Complex{T}) =
oftype(z, widen(z)*inv(widen(w)))
# robust complex division for double precision
# the first step is to scale variables if appropriate ,then do calculations
# in a way that avoids over/underflow (subfuncs 1 and 2), then undo the scaling.
# scaling variable s and other techniques
# based on arxiv.1210.4539
# a + i*b
# p + i*q = ---------
# c + i*d
function /(z::Complex128, w::Complex128)
a, b = reim(z); c, d = reim(w)
half = 0.5
two = 2.0
ab = max(abs(a), abs(b))
cd = max(abs(c), abs(d))
ov = realmax(a)
un = realmin(a)
ϵ = eps(Float64)
bs = two/(ϵ*ϵ)
s = 1.0
ab >= half*ov && (a=half*a; b=half*b; s=two*s ) # scale down a,b
cd >= half*ov && (c=half*c; d=half*d; s=s*half) # scale down c,d
ab <= un*two/ϵ && (a=a*bs; b=b*bs; s=s/bs ) # scale up a,b
cd <= un*two/ϵ && (c=c*bs; d=d*bs; s=s*bs ) # scale up c,d
abs(d)<=abs(c) ? ((p,q)=robust_cdiv1(a,b,c,d) ) : ((p,q)=robust_cdiv1(b,a,d,c); q=-q)
return Complex128(p*s,q*s) # undo scaling
end
function robust_cdiv1(a::Float64, b::Float64, c::Float64, d::Float64)
r = d/c
t = 1.0/(c+d*r)
p = robust_cdiv2(a,b,c,d,r,t)
q = robust_cdiv2(b,-a,c,d,r,t)
return p,q
end
function robust_cdiv2(a::Float64, b::Float64, c::Float64, d::Float64, r::Float64, t::Float64)
if r != 0
br = b*r
return (br != 0 ? (a+br)*t : a*t + (b*t)*r)
else
return (a + d*(b/c)) * t
end
end
function inv(w::Complex128)
c, d = reim(w)
half = 0.5
two = 2.0
cd = max(abs(c), abs(d))
ov = realmax(c)
un = realmin(c)
ϵ = eps(Float64)
bs = two/(ϵ*ϵ)
s = 1.0
cd >= half*ov && (c=half*c; d=half*d; s=s*half) # scale down c,d
cd <= un*two/ϵ && (c=c*bs; d=d*bs; s=s*bs ) # scale up c,d
if abs(d)<=abs(c)
r = d/c
t = 1.0/(c+d*r)
p = t
q = -r * t
else
c, d = d, c
r = d/c
t = 1.0/(c+d*r)
p = r * t
q = -t
end
return Complex128(p*s,q*s) # undo scaling
end
function ssqs{T<:AbstractFloat}(x::T, y::T)
k::Int = 0
ρ = x*x + y*y
if !isfinite(ρ) && (isinf(x) || isinf(y))
ρ = convert(T, Inf)
elseif isinf(ρ) || (ρ==0 && (x!=0 || y!=0)) || ρ<nextfloat(zero(T))/(2*eps(T)^2)
m::T = max(abs(x), abs(y))
k = m==0 ? m : exponent(m)
xk, yk = ldexp(x,-k), ldexp(y,-k)
ρ = xk*xk + yk*yk
end
ρ, k
end
function sqrt{T<:AbstractFloat}(z::Complex{T})
x, y = reim(z)
if x==y==0
return Complex(zero(x),y)
end
ρ, k::Int = ssqs(x, y)
if isfinite(x) ρ=ldexp(abs(x),-k)+sqrt(ρ) end
if isodd(k)
k = div(k-1,2)
else
k = div(k,2)-1
ρ += ρ
end
ρ = ldexp(sqrt(ρ),k) #sqrt((abs(z)+abs(x))/2) without over/underflow
ξ = ρ
η = y
if ρ != 0
if isfinite(η) η=(η/ρ)/2 end
if x<0
ξ = abs(η)
η = copysign(ρ,y)
end
end
Complex(ξ,η)
end
sqrt(z::Complex) = sqrt(float(z))
# function sqrt(z::Complex)
# rz = float(real(z))
# iz = float(imag(z))
# r = sqrt((hypot(rz,iz)+abs(rz))/2)
# if r == 0
# return Complex(zero(iz), iz)
# end
# if rz >= 0
# return Complex(r, iz/r/2)
# end
# return Complex(abs(iz)/r/2, copysign(r,iz))
# end
# compute exp(im*theta)
cis(theta::Real) = Complex(cos(theta),sin(theta))
function cis(z::Complex)
v = exp(-imag(z))
Complex(v*cos(real(z)), v*sin(real(z)))
end
@vectorize_1arg Number cis
angle(z::Complex) = atan2(imag(z), real(z))
function log{T<:AbstractFloat}(z::Complex{T})
const T1::T = 1.25
const T2::T = 3
const ln2::T = log(convert(T,2)) #0.6931471805599453
x, y = reim(z)
ρ, k = ssqs(x,y)
ax = abs(x)
ay = abs(y)
if ax < ay
θ, β = ax, ay
else
θ, β = ay, ax
end
if k==0 && (0.5 < β*β) && (β <= T1 || ρ < T2)
ρρ = log1p((β-1)*(β+1)+θ*θ)/2
else
ρρ = log(ρ)/2 + k*ln2
end
Complex(ρρ, angle(z))
end
log(z::Complex) = log(float(z))
# function log(z::Complex)
# ar = abs(real(z))
# ai = abs(imag(z))
# if ar < ai
# r = ar/ai
# re = log(ai) + log1p(r*r)/2
# else
# if ar == 0
# re = isnan(ai) ? ai : -inv(ar)
# elseif isinf(ai)
# re = oftype(ar,Inf)
# else
# r = ai/ar
# re = log(ar) + log1p(r*r)/2
# end
# end
# Complex(re, angle(z))
# end
function log10(z::Complex)
a = log(z)
a/log(oftype(real(a),10))
end
function log2(z::Complex)
a = log(z)
a/log(oftype(real(a),2))
end
function exp(z::Complex)
zr, zi = reim(z)
if isnan(zr)
Complex(zr, zi==0 ? zi : zr)
elseif !isfinite(zi)
if zr == Inf
Complex(-zr, oftype(zr,NaN))
elseif zr == -Inf
Complex(-zero(zr), copysign(zero(zi), zi))
else
Complex(oftype(zr,NaN), oftype(zi,NaN))
end
else
er = exp(zr)
if zi == zero(zi)
Complex(er, zi)
else
Complex(er*cos(zi), er*sin(zi))
end
end
end
function expm1(z::Complex)
zr,zi = reim(z)
if isnan(zr)
Complex(zr, zi==0 ? zi : zr)
elseif !isfinite(zi)
if zr == Inf
Complex(-zr, oftype(zr,NaN))
elseif zr == -Inf
Complex(-one(zr), copysign(zero(zi), zi))
else
Complex(oftype(zr,NaN), oftype(zi,NaN))
end
else
erm1 = expm1(zr)
if zi == 0
Complex(erm1, zi)
else
er = erm1+one(erm1)
wr = isfinite(er) ? erm1 - 2.0*er*(sin(0.5*zi))^2 : er*cos(zi)
Complex(wr, er*sin(zi))
end
end
end
function log1p{T}(z::Complex{T})
zr,zi = reim(z)
if isfinite(zr)
isinf(zi) && return log(z)
# This is based on a well-known trick for log1p of real z,
# allegedly due to Kahan, only modified to handle real(u) <= 0
# differently to avoid inaccuracy near z==-2 and for correct branch cut
u = float(one(T)) + z
u == 1 ? convert(typeof(u), z) : real(u) <= 0 ? log(u) : log(u)*z/(u-1)
elseif isnan(zr)
Complex(zr, zr)
elseif isfinite(zi)
Complex(T(Inf), copysign(zr > 0 ? zero(T) : convert(T, pi), zi))
else
Complex(T(Inf), T(NaN))
end
end
function ^{T<:AbstractFloat}(z::Complex{T}, p::Complex{T})
if p==2 #square
zr, zi = reim(z)
x = (zr-zi)*(zr+zi)
y = 2zr*zi
if isnan(x)
if isinf(y)
x = copysign(zero(T),zr)
elseif isinf(zi)
x = convert(T,-Inf)
elseif isinf(zr)
x = convert(T,Inf)
end
elseif isnan(y) && isinf(x)
y = copysign(zero(T), y)
end
Complex(x,y)
elseif z!=0
if p!=0 && isinteger(p)
rp = real(p)
if rp < 0
return power_by_squaring(inv(z), convert(Integer, -rp))
else
return power_by_squaring(z, convert(Integer, rp))
end
end
exp(p*log(z))
elseif p!=0 #0^p
zero(z) #CHECK SIGNS
else #0^0
zer = copysign(zero(T),real(p))*copysign(zero(T),imag(z))
Complex(one(T), zer)
end
end
function exp2{T}(z::Complex{T})
er = exp2(real(z))
theta = imag(z) * log(convert(T, 2))
Complex(er*cos(theta), er*sin(theta))
end
function exp10{T}(z::Complex{T})
er = exp10(real(z))
theta = imag(z) * log(convert(T, 10))
Complex(er*cos(theta), er*sin(theta))
end
function ^{T<:Complex}(z::T, p::T)
if isinteger(p)
rp = real(p)
if rp < 0
return power_by_squaring(inv(float(z)), convert(Integer, -rp))
else
return power_by_squaring(float(z), convert(Integer, rp))
end
end
pr, pim = reim(p)
zr, zi = reim(z)
r = abs(z)
rp = r^pr
theta = atan2(zi, zr)
ntheta = pr*theta
if pim != 0 && r != 0
rp = rp*exp(-pim*theta)
ntheta = ntheta + pim*log(r)
end
cosntheta = cos(ntheta)
sinntheta = sin(ntheta)
re, im = rp*cosntheta, rp*sinntheta
if isinf(rp)
if isnan(re)
re = copysign(zero(re), cosntheta)
end
if isnan(im)
im = copysign(zero(im), sinntheta)
end
end
# apply some corrections to force known zeros
if pim == 0
if isinteger(pr)
if zi == 0
im = copysign(zero(im), im)
elseif zr == 0
if isinteger(0.5*pr) # pr is even
im = copysign(zero(im), im)
else
re = copysign(zero(re), re)
end
end
else
dr = pr*2
if isinteger(dr) && zi == 0
if zr < 0
re = copysign(zero(re), re)
else
im = copysign(zero(im), im)
end
end
end
end
Complex(re, im)
end
^(z::Complex, n::Bool) = n ? z : one(z)
^(z::Complex, n::Integer) = z^Complex(n)
^{T<:AbstractFloat}(z::Complex{T}, n::Bool) = n ? z : one(z) # to resolve ambiguity
^{T<:Integer}(z::Complex{T}, n::Bool) = n ? z : one(z) # to resolve ambiguity
^{T<:AbstractFloat}(z::Complex{T}, n::Integer) =
n>=0 ? power_by_squaring(z,n) : power_by_squaring(inv(z),-n)
^{T<:Integer}(z::Complex{T}, n::Integer) = power_by_squaring(z,n) # DomainError for n<0
function sin{T}(z::Complex{T})
F = float(T)
zr, zi = reim(z)
if zr == 0
Complex(F(zr), sinh(zi))
elseif !isfinite(zr)
if zi == 0 || isinf(zi)
Complex(F(NaN), F(zi))
else
Complex(F(NaN), F(NaN))
end
else
Complex(sin(zr)*cosh(zi), cos(zr)*sinh(zi))
end
end
function cos{T}(z::Complex{T})
F = float(T)
zr, zi = reim(z)
if zr == 0
Complex(cosh(zi), isnan(zi) ? F(zr) : -flipsign(F(zr),zi))
elseif !isfinite(zr)
if zi == 0
Complex(F(NaN), isnan(zr) ? zero(F) : -flipsign(F(zi),zr))
elseif isinf(zi)
Complex(F(Inf), F(NaN))
else
Complex(F(NaN), F(NaN))
end
else
Complex(cos(zr)*cosh(zi), -sin(zr)*sinh(zi))
end
end
function tan(z::Complex)
zr, zi = reim(z)
w = tanh(Complex(-zi, zr))
Complex(imag(w), -real(w))
end
function asin(z::Complex)
zr, zi = reim(z)
if isinf(zr) && isinf(zi)
return Complex(copysign(oftype(zr,pi)/4, zr),zi)
elseif isnan(zi) && isinf(zr)
return Complex(zi, oftype(zr, Inf))
end
ξ = zr == 0 ? zr :
!isfinite(zr) ? oftype(zr,pi)/2 * sign(zr) :
atan2(zr, real(sqrt(1-z)*sqrt(1+z)))
η = asinh(copysign(imag(sqrt(conj(1-z))*sqrt(1+z)), imag(z)))
Complex(ξ,η)
end
function acos{T<:AbstractFloat}(z::Complex{T})
zr, zi = reim(z)
if isnan(zr)
if isinf(zi) return Complex(zr, -zi)
else return Complex(zr, zr) end
elseif isnan(zi)
if isinf(zr) return Complex(zi, abs(zr))
elseif zr==0 return Complex(oftype(zr,pi)/2, zi)
else return Complex(zi, zi) end
elseif zr==zi==0
return Complex(oftype(zr,pi)/2, -zi)
elseif zr==Inf && zi===0.0
return Complex(zi, -zr)
elseif zr==-Inf && zi===-0.0
return Complex(oftype(zi,pi), -zr)
end
ξ = 2*atan2(real(sqrt(1-z)), real(sqrt(1+z)))
η = asinh(imag(sqrt(conj(1+z))*sqrt(1-z)))
if isinf(zr) && isinf(zi) ξ -= oftype(η,pi)/4 * sign(zr) end
Complex(ξ,η)
end
acos(z::Complex) = acos(float(z))
function atan(z::Complex)
w = atanh(Complex(-imag(z),real(z)))
Complex(imag(w),-real(w))
end
function sinh(z::Complex)
zr, zi = reim(z)
w = sin(Complex(zi, zr))
Complex(imag(w),real(w))
end
function cosh(z::Complex)
zr, zi = reim(z)
cos(Complex(zi,-zr))
end
function tanh{T<:AbstractFloat}(z::Complex{T})
const Ω = prevfloat(typemax(T))
ξ, η = reim(z)
if isnan(ξ) && η==0 return Complex(ξ, η) end
if 4*abs(ξ) > asinh(Ω) #Overflow?
Complex(copysign(one(T),ξ),
copysign(zero(T),η*(isfinite(η) ? sin(2*abs(η)) : one(η))))
else
t = tan(η)
β = 1+t*t #sec(η)^2
s = sinh(ξ)
ρ = sqrt(1 + s*s) #cosh(ξ)
if isinf(t)
Complex(ρ/s,1/t)
else
Complex(β*ρ*s,t)/(1+β*s*s)
end
end
end
tanh(z::Complex) = tanh(float(z))
function asinh(z::Complex)
w = asin(Complex(-imag(z),real(z)))
Complex(imag(w),-real(w))
end
function acosh(z::Complex)
zr, zi = reim(z)
if isnan(zr) || isnan(zi)
if isinf(zr) || isinf(zi)
return Complex(oftype(zr, Inf), oftype(zi, NaN))
else
return Complex(oftype(zr, NaN), oftype(zi, NaN))
end
elseif zr==-Inf && zi===-0.0 #Edge case is wrong - WHY?
return Complex(oftype(zr,Inf), oftype(zi, -pi))
end
ξ = asinh(real(sqrt(conj(z-1))*sqrt(z+1)))
η = 2atan2(imag(sqrt(z-1)),real(sqrt(z+1)))
if isinf(zr) && isinf(zi)
η -= oftype(η,pi)/4 * sign(zi) * sign(zr)
end
Complex(ξ, η)
end
function atanh{T<:AbstractFloat}(z::Complex{T})
const Ω = prevfloat(typemax(T))
const θ = sqrt(Ω)/4
const ρ = 1/θ
x, y = reim(z)
ax = abs(x)
ay = abs(y)
if ax > θ || ay > θ #Prevent overflow
if isnan(y)
if isinf(x)
return Complex(copysign(zero(x),x), y)
else
return Complex(real(1/z), y)
end
end
if isinf(y)
return Complex(copysign(zero(x),x), copysign(oftype(y,pi)/2, y))
end
return Complex(real(1/z), copysign(oftype(y,pi)/2, y))
elseif ax==1
if y == 0
ξ = copysign(oftype(x,Inf),x)
η = zero(y)
else
ym = ay+ρ
ξ = log(sqrt(sqrt(4+y*y))/sqrt(ym))
η = copysign(oftype(y,pi)/2 + atan(ym/2), y)/2
end
else #Normal case
ysq = (ay+ρ)^2
if x == 0
ξ = x
else
ξ = log1p(4x/((1-x)^2 + ysq))/4
end
η = angle(Complex((1-x)*(1+x)-ysq, 2y))/2
end
Complex(ξ, η)
end
atanh(z::Complex) = atanh(float(z))
function lexcmp(a::Complex, b::Complex)
c = cmp(real(a), real(b))
c == 0 || return c
cmp(imag(a), imag(b))
end
#Rounding complex numbers
#Requires two different RoundingModes for the real and imaginary components
function round{T<:AbstractFloat, MR, MI}(z::Complex{T}, ::RoundingMode{MR}, ::RoundingMode{MI})
Complex(round(real(z), RoundingMode{MR}()),
round(imag(z), RoundingMode{MI}()))
end
round(z::Complex) = Complex(round(real(z)), round(imag(z)))
@vectorize_1arg Complex round
function round(z::Complex, digits::Integer, base::Integer=10)
Complex(round(real(z), digits, base),
round(imag(z), digits, base))
end
float{T<:AbstractFloat}(z::Complex{T}) = z
float(z::Complex) = Complex(float(real(z)), float(imag(z)))
@vectorize_1arg Complex float
big{T<:AbstractFloat}(z::Complex{T}) = Complex{BigFloat}(z)
big{T<:Integer}(z::Complex{T}) = Complex{BigInt}(z)
## Array operations on complex numbers ##
complex{T<:Complex}(A::AbstractArray{T}) = A
function complex{T}(A::AbstractArray{T})
if !isleaftype(T)
error("`complex` not defined on abstractly-typed arrays; please convert to a more specific type")
end
convert(AbstractArray{typeof(complex(zero(T)))}, A)
end
big{T<:Integer,N}(A::AbstractArray{Complex{T},N}) = convert(AbstractArray{Complex{BigInt},N}, A)
big{T<:AbstractFloat,N}(A::AbstractArray{Complex{T},N}) = convert(AbstractArray{Complex{BigFloat},N}, A)
## promotion to complex ##
promote_array_type{S<:Union{Complex, Real}, AT<:AbstractFloat, P}(F, ::Type{S}, ::Type{Complex{AT}}, ::Type{P}) = Complex{AT}
function complex{S<:Real,T<:Real}(A::AbstractArray{S}, B::AbstractArray{T})
if size(A) != size(B); throw(DimensionMismatch()); end
F = similar(A, typeof(complex(zero(S),zero(T))))
for (iF, iA, iB) in zip(eachindex(F), eachindex(A), eachindex(B))
@inbounds F[iF] = complex(A[iA], B[iB])
end
return F
end
function complex{T<:Real}(A::Real, B::AbstractArray{T})
F = similar(B, typeof(complex(A,zero(T))))
for (iF, iB) in zip(eachindex(F), eachindex(B))
@inbounds F[iF] = complex(A, B[iB])
end
return F
end
function complex{T<:Real}(A::AbstractArray{T}, B::Real)
F = similar(A, typeof(complex(zero(T),B)))
for (iF, iA) in zip(eachindex(F), eachindex(A))
@inbounds F[iF] = complex(A[iA], B)
end
return F
end