Here are the results of each benchmark model running on Qlib's Alpha360
and Alpha158
dataset with China's A shared-stock & CSI300 data respectively. The values of each metric are the mean and std calculated based on 20 runs with different random seeds.
The numbers shown below demonstrate the performance of the entire workflow
of each model. We will update the workflow
as well as models in the near future for better results.
If you need to reproduce the results below, please use the v1 dataset:
python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/qlib_cn_1d --region cn --version v1
In the new version of qlib, the default dataset is v2. Since the data is collected from the YahooFinance API (which is not very stable), the results of v2 and v1 may differ
Model Name | Dataset | IC | ICIR | Rank IC | Rank ICIR | Annualized Return | Information Ratio | Max Drawdown |
---|---|---|---|---|---|---|---|---|
TabNet(Sercan O. Arik, et al.) | Alpha158 | 0.0204±0.01 | 0.1554±0.07 | 0.0333±0.00 | 0.2552±0.05 | 0.0227±0.04 | 0.3676±0.54 | -0.1089±0.08 |
Transformer(Ashish Vaswani, et al.) | Alpha158 | 0.0264±0.00 | 0.2053±0.02 | 0.0407±0.00 | 0.3273±0.02 | 0.0273±0.02 | 0.3970±0.26 | -0.1101±0.02 |
GRU(Kyunghyun Cho, et al.) | Alpha158(with selected 20 features) | 0.0315±0.00 | 0.2450±0.04 | 0.0428±0.00 | 0.3440±0.03 | 0.0344±0.02 | 0.5160±0.25 | -0.1017±0.02 |
LSTM(Sepp Hochreiter, et al.) | Alpha158(with selected 20 features) | 0.0318±0.00 | 0.2367±0.04 | 0.0435±0.00 | 0.3389±0.03 | 0.0381±0.03 | 0.5561±0.46 | -0.1207±0.04 |
Localformer(Juyong Jiang, et al.) | Alpha158 | 0.0356±0.00 | 0.2756±0.03 | 0.0468±0.00 | 0.3784±0.03 | 0.0438±0.02 | 0.6600±0.33 | -0.0952±0.02 |
SFM(Liheng Zhang, et al.) | Alpha158 | 0.0379±0.00 | 0.2959±0.04 | 0.0464±0.00 | 0.3825±0.04 | 0.0465±0.02 | 0.5672±0.29 | -0.1282±0.03 |
ALSTM (Yao Qin, et al.) | Alpha158(with selected 20 features) | 0.0362±0.01 | 0.2789±0.06 | 0.0463±0.01 | 0.3661±0.05 | 0.0470±0.03 | 0.6992±0.47 | -0.1072±0.03 |
GATs (Petar Velickovic, et al.) | Alpha158(with selected 20 features) | 0.0349±0.00 | 0.2511±0.01 | 0.0462±0.00 | 0.3564±0.01 | 0.0497±0.01 | 0.7338±0.19 | -0.0777±0.02 |
TRA(Hengxu Lin, et al.) | Alpha158(with selected 20 features) | 0.0404±0.00 | 0.3197±0.05 | 0.0490±0.00 | 0.4047±0.04 | 0.0649±0.02 | 1.0091±0.30 | -0.0860±0.02 |
Linear | Alpha158 | 0.0397±0.00 | 0.3000±0.00 | 0.0472±0.00 | 0.3531±0.00 | 0.0692±0.00 | 0.9209±0.00 | -0.1509±0.00 |
TRA(Hengxu Lin, et al.) | Alpha158 | 0.0440±0.00 | 0.3535±0.05 | 0.0540±0.00 | 0.4451±0.03 | 0.0718±0.02 | 1.0835±0.35 | -0.0760±0.02 |
CatBoost(Liudmila Prokhorenkova, et al.) | Alpha158 | 0.0481±0.00 | 0.3366±0.00 | 0.0454±0.00 | 0.3311±0.00 | 0.0765±0.00 | 0.8032±0.01 | -0.1092±0.00 |
XGBoost(Tianqi Chen, et al.) | Alpha158 | 0.0498±0.00 | 0.3779±0.00 | 0.0505±0.00 | 0.4131±0.00 | 0.0780±0.00 | 0.9070±0.00 | -0.1168±0.00 |
TFT (Bryan Lim, et al.) | Alpha158(with selected 20 features) | 0.0358±0.00 | 0.2160±0.03 | 0.0116±0.01 | 0.0720±0.03 | 0.0847±0.02 | 0.8131±0.19 | -0.1824±0.03 |
MLP | Alpha158 | 0.0376±0.00 | 0.2846±0.02 | 0.0429±0.00 | 0.3220±0.01 | 0.0895±0.02 | 1.1408±0.23 | -0.1103±0.02 |
LightGBM(Guolin Ke, et al.) | Alpha158 | 0.0448±0.00 | 0.3660±0.00 | 0.0469±0.00 | 0.3877±0.00 | 0.0901±0.00 | 1.0164±0.00 | -0.1038±0.00 |
DoubleEnsemble(Chuheng Zhang, et al.) | Alpha158 | 0.0544±0.00 | 0.4340±0.00 | 0.0523±0.00 | 0.4284±0.01 | 0.1168±0.01 | 1.3384±0.12 | -0.1036±0.01 |
Model Name | Dataset | IC | ICIR | Rank IC | Rank ICIR | Annualized Return | Information Ratio | Max Drawdown |
---|---|---|---|---|---|---|---|---|
Transformer(Ashish Vaswani, et al.) | Alpha360 | 0.0114±0.00 | 0.0716±0.03 | 0.0327±0.00 | 0.2248±0.02 | -0.0270±0.03 | -0.3378±0.37 | -0.1653±0.05 |
TabNet(Sercan O. Arik, et al.) | Alpha360 | 0.0099±0.00 | 0.0593±0.00 | 0.0290±0.00 | 0.1887±0.00 | -0.0369±0.00 | -0.3892±0.00 | -0.2145±0.00 |
MLP | Alpha360 | 0.0273±0.00 | 0.1870±0.02 | 0.0396±0.00 | 0.2910±0.02 | 0.0029±0.02 | 0.0274±0.23 | -0.1385±0.03 |
Localformer(Juyong Jiang, et al.) | Alpha360 | 0.0404±0.00 | 0.2932±0.04 | 0.0542±0.00 | 0.4110±0.03 | 0.0246±0.02 | 0.3211±0.21 | -0.1095±0.02 |
CatBoost((Liudmila Prokhorenkova, et al.) | Alpha360 | 0.0378±0.00 | 0.2714±0.00 | 0.0467±0.00 | 0.3659±0.00 | 0.0292±0.00 | 0.3781±0.00 | -0.0862±0.00 |
XGBoost(Tianqi Chen, et al.) | Alpha360 | 0.0394±0.00 | 0.2909±0.00 | 0.0448±0.00 | 0.3679±0.00 | 0.0344±0.00 | 0.4527±0.02 | -0.1004±0.00 |
DoubleEnsemble(Chuheng Zhang, et al.) | Alpha360 | 0.0404±0.00 | 0.3023±0.00 | 0.0495±0.00 | 0.3898±0.00 | 0.0468±0.01 | 0.6302±0.20 | -0.0860±0.01 |
LightGBM(Guolin Ke, et al.) | Alpha360 | 0.0400±0.00 | 0.3037±0.00 | 0.0499±0.00 | 0.4042±0.00 | 0.0558±0.00 | 0.7632±0.00 | -0.0659±0.00 |
ALSTM (Yao Qin, et al.) | Alpha360 | 0.0497±0.00 | 0.3829±0.04 | 0.0599±0.00 | 0.4736±0.03 | 0.0626±0.02 | 0.8651±0.31 | -0.0994±0.03 |
LSTM(Sepp Hochreiter, et al.) | Alpha360 | 0.0448±0.00 | 0.3474±0.04 | 0.0549±0.00 | 0.4366±0.03 | 0.0647±0.03 | 0.8963±0.39 | -0.0875±0.02 |
GRU(Kyunghyun Cho, et al.) | Alpha360 | 0.0493±0.00 | 0.3772±0.04 | 0.0584±0.00 | 0.4638±0.03 | 0.0720±0.02 | 0.9730±0.33 | -0.0821±0.02 |
TCTS(Xueqing Wu, et al.) | Alpha360 | 0.0454±0.01 | 0.3457±0.06 | 0.0566±0.01 | 0.4492±0.05 | 0.0744±0.03 | 1.0594±0.41 | -0.0761±0.03 |
GATs (Petar Velickovic, et al.) | Alpha360 | 0.0476±0.00 | 0.3508±0.02 | 0.0598±0.00 | 0.4604±0.01 | 0.0824±0.02 | 1.1079±0.26 | -0.0894±0.03 |
TRA(Hengxu Lin, et al.) | Alpha360 | 0.0485±0.00 | 0.3787±0.03 | 0.0587±0.00 | 0.4756±0.03 | 0.0920±0.03 | 1.2789±0.42 | -0.0834±0.02 |
- The selected 20 features are based on the feature importance of a lightgbm-based model.
- The base model of DoubleEnsemble is LGBM.