Skip to content

Latest commit

 

History

History
55 lines (45 loc) · 7.43 KB

README.md

File metadata and controls

55 lines (45 loc) · 7.43 KB

Benchmarks Performance

Here are the results of each benchmark model running on Qlib's Alpha360 and Alpha158 dataset with China's A shared-stock & CSI300 data respectively. The values of each metric are the mean and std calculated based on 20 runs with different random seeds.

The numbers shown below demonstrate the performance of the entire workflow of each model. We will update the workflow as well as models in the near future for better results.

If you need to reproduce the results below, please use the v1 dataset: python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/qlib_cn_1d --region cn --version v1

In the new version of qlib, the default dataset is v2. Since the data is collected from the YahooFinance API (which is not very stable), the results of v2 and v1 may differ

Alpha158 dataset

Model Name Dataset IC ICIR Rank IC Rank ICIR Annualized Return Information Ratio Max Drawdown
TabNet(Sercan O. Arik, et al.) Alpha158 0.0204±0.01 0.1554±0.07 0.0333±0.00 0.2552±0.05 0.0227±0.04 0.3676±0.54 -0.1089±0.08
Transformer(Ashish Vaswani, et al.) Alpha158 0.0264±0.00 0.2053±0.02 0.0407±0.00 0.3273±0.02 0.0273±0.02 0.3970±0.26 -0.1101±0.02
GRU(Kyunghyun Cho, et al.) Alpha158(with selected 20 features) 0.0315±0.00 0.2450±0.04 0.0428±0.00 0.3440±0.03 0.0344±0.02 0.5160±0.25 -0.1017±0.02
LSTM(Sepp Hochreiter, et al.) Alpha158(with selected 20 features) 0.0318±0.00 0.2367±0.04 0.0435±0.00 0.3389±0.03 0.0381±0.03 0.5561±0.46 -0.1207±0.04
Localformer(Juyong Jiang, et al.) Alpha158 0.0356±0.00 0.2756±0.03 0.0468±0.00 0.3784±0.03 0.0438±0.02 0.6600±0.33 -0.0952±0.02
SFM(Liheng Zhang, et al.) Alpha158 0.0379±0.00 0.2959±0.04 0.0464±0.00 0.3825±0.04 0.0465±0.02 0.5672±0.29 -0.1282±0.03
ALSTM (Yao Qin, et al.) Alpha158(with selected 20 features) 0.0362±0.01 0.2789±0.06 0.0463±0.01 0.3661±0.05 0.0470±0.03 0.6992±0.47 -0.1072±0.03
GATs (Petar Velickovic, et al.) Alpha158(with selected 20 features) 0.0349±0.00 0.2511±0.01 0.0462±0.00 0.3564±0.01 0.0497±0.01 0.7338±0.19 -0.0777±0.02
TRA(Hengxu Lin, et al.) Alpha158(with selected 20 features) 0.0404±0.00 0.3197±0.05 0.0490±0.00 0.4047±0.04 0.0649±0.02 1.0091±0.30 -0.0860±0.02
Linear Alpha158 0.0397±0.00 0.3000±0.00 0.0472±0.00 0.3531±0.00 0.0692±0.00 0.9209±0.00 -0.1509±0.00
TRA(Hengxu Lin, et al.) Alpha158 0.0440±0.00 0.3535±0.05 0.0540±0.00 0.4451±0.03 0.0718±0.02 1.0835±0.35 -0.0760±0.02
CatBoost(Liudmila Prokhorenkova, et al.) Alpha158 0.0481±0.00 0.3366±0.00 0.0454±0.00 0.3311±0.00 0.0765±0.00 0.8032±0.01 -0.1092±0.00
XGBoost(Tianqi Chen, et al.) Alpha158 0.0498±0.00 0.3779±0.00 0.0505±0.00 0.4131±0.00 0.0780±0.00 0.9070±0.00 -0.1168±0.00
TFT (Bryan Lim, et al.) Alpha158(with selected 20 features) 0.0358±0.00 0.2160±0.03 0.0116±0.01 0.0720±0.03 0.0847±0.02 0.8131±0.19 -0.1824±0.03
MLP Alpha158 0.0376±0.00 0.2846±0.02 0.0429±0.00 0.3220±0.01 0.0895±0.02 1.1408±0.23 -0.1103±0.02
LightGBM(Guolin Ke, et al.) Alpha158 0.0448±0.00 0.3660±0.00 0.0469±0.00 0.3877±0.00 0.0901±0.00 1.0164±0.00 -0.1038±0.00
DoubleEnsemble(Chuheng Zhang, et al.) Alpha158 0.0544±0.00 0.4340±0.00 0.0523±0.00 0.4284±0.01 0.1168±0.01 1.3384±0.12 -0.1036±0.01

Alpha360 dataset

Model Name Dataset IC ICIR Rank IC Rank ICIR Annualized Return Information Ratio Max Drawdown
Transformer(Ashish Vaswani, et al.) Alpha360 0.0114±0.00 0.0716±0.03 0.0327±0.00 0.2248±0.02 -0.0270±0.03 -0.3378±0.37 -0.1653±0.05
TabNet(Sercan O. Arik, et al.) Alpha360 0.0099±0.00 0.0593±0.00 0.0290±0.00 0.1887±0.00 -0.0369±0.00 -0.3892±0.00 -0.2145±0.00
MLP Alpha360 0.0273±0.00 0.1870±0.02 0.0396±0.00 0.2910±0.02 0.0029±0.02 0.0274±0.23 -0.1385±0.03
Localformer(Juyong Jiang, et al.) Alpha360 0.0404±0.00 0.2932±0.04 0.0542±0.00 0.4110±0.03 0.0246±0.02 0.3211±0.21 -0.1095±0.02
CatBoost((Liudmila Prokhorenkova, et al.) Alpha360 0.0378±0.00 0.2714±0.00 0.0467±0.00 0.3659±0.00 0.0292±0.00 0.3781±0.00 -0.0862±0.00
XGBoost(Tianqi Chen, et al.) Alpha360 0.0394±0.00 0.2909±0.00 0.0448±0.00 0.3679±0.00 0.0344±0.00 0.4527±0.02 -0.1004±0.00
DoubleEnsemble(Chuheng Zhang, et al.) Alpha360 0.0404±0.00 0.3023±0.00 0.0495±0.00 0.3898±0.00 0.0468±0.01 0.6302±0.20 -0.0860±0.01
LightGBM(Guolin Ke, et al.) Alpha360 0.0400±0.00 0.3037±0.00 0.0499±0.00 0.4042±0.00 0.0558±0.00 0.7632±0.00 -0.0659±0.00
ALSTM (Yao Qin, et al.) Alpha360 0.0497±0.00 0.3829±0.04 0.0599±0.00 0.4736±0.03 0.0626±0.02 0.8651±0.31 -0.0994±0.03
LSTM(Sepp Hochreiter, et al.) Alpha360 0.0448±0.00 0.3474±0.04 0.0549±0.00 0.4366±0.03 0.0647±0.03 0.8963±0.39 -0.0875±0.02
GRU(Kyunghyun Cho, et al.) Alpha360 0.0493±0.00 0.3772±0.04 0.0584±0.00 0.4638±0.03 0.0720±0.02 0.9730±0.33 -0.0821±0.02
TCTS(Xueqing Wu, et al.) Alpha360 0.0454±0.01 0.3457±0.06 0.0566±0.01 0.4492±0.05 0.0744±0.03 1.0594±0.41 -0.0761±0.03
GATs (Petar Velickovic, et al.) Alpha360 0.0476±0.00 0.3508±0.02 0.0598±0.00 0.4604±0.01 0.0824±0.02 1.1079±0.26 -0.0894±0.03
TRA(Hengxu Lin, et al.) Alpha360 0.0485±0.00 0.3787±0.03 0.0587±0.00 0.4756±0.03 0.0920±0.03 1.2789±0.42 -0.0834±0.02
  • The selected 20 features are based on the feature importance of a lightgbm-based model.
  • The base model of DoubleEnsemble is LGBM.