forked from BBuf/tvm_mlir_learn
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtvm_pytorch_resnet18_inference.py
145 lines (127 loc) · 4.71 KB
/
tvm_pytorch_resnet18_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import time
import tvm
from tvm import relay
import numpy as np
from tvm.contrib.download import download_testdata
import torch
import torchvision
from scipy.special import softmax
# device = torch.device("cpu")
model_name = "resnet18"
model = getattr(torchvision.models, model_name)(pretrained=True)
model = model.eval()
# We grab the TorchScripted model via tracing
input_shape = [1, 3, 224, 224]
input_data = torch.randn(input_shape)
scripted_model = torch.jit.trace(model, input_data).eval()
from PIL import Image
img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true"
img_path = download_testdata(img_url, "cat.png", module="data")
print(img_path)
img = Image.open(img_path).resize((224, 224))
# Preprocess the image and convert to tensor
from torchvision import transforms
my_preprocess = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
img = my_preprocess(img)
img = np.expand_dims(img, 0)
######################################################################
# Import the graph to Relay
# -------------------------
# Convert PyTorch graph to Relay graph. The input name can be arbitrary.
input_name = "input0"
shape_list = [(input_name, img.shape)]
mod, params = relay.frontend.from_pytorch(scripted_model, shape_list)
######################################################################
# Relay Build
# -----------
# Compile the graph to llvm target with given input specification.
target = "llvm"
target_host = "llvm"
dev = tvm.cpu(0)
with tvm.transform.PassContext(opt_level=7):
lib = relay.build(mod, target=target, target_host=target_host, params=params)
######################################################################
# Execute the portable graph on TVM
# ---------------------------------
# Now we can try deploying the compiled model on target.
from tvm.contrib import graph_executor
m = graph_executor.GraphModule(lib["default"](dev))
tvm_time_spent=[]
torch_time_spent=[]
n_warmup=5
n_time=10
# tvm_t0 = time.process_time()
for i in range(n_warmup+n_time):
dtype = "float32"
# Set inputs
m.set_input(input_name, tvm.nd.array(img.astype(dtype)))
tvm_t0 = time.time()
# Execute
m.run()
# Get outputs
tvm_output = m.get_output(0)
tvm_time_spent.append(time.time() - tvm_t0)
# tvm_t1 = time.process_time()
#####################################################################
# Look up synset name
# -------------------
# Look up prediction top 1 index in 1000 class synset.
synset_url = "".join(
[
"https://raw.githubusercontent.com/Cadene/",
"pretrained-models.pytorch/master/data/",
"imagenet_synsets.txt",
]
)
synset_name = "imagenet_synsets.txt"
synset_path = download_testdata(synset_url, synset_name, module="data")
with open(synset_path) as f:
synsets = f.readlines()
synsets = [x.strip() for x in synsets]
splits = [line.split(" ") for line in synsets]
key_to_classname = {spl[0]: " ".join(spl[1:]) for spl in splits}
class_url = "".join(
[
"https://raw.githubusercontent.com/Cadene/",
"pretrained-models.pytorch/master/data/",
"imagenet_classes.txt",
]
)
class_name = "imagenet_classes.txt"
class_path = download_testdata(class_url, class_name, module="data")
with open(class_path) as f:
class_id_to_key = f.readlines()
class_id_to_key = [x.strip() for x in class_id_to_key]
# Get top-1 result for TVM
top1_tvm = np.argmax(tvm_output.asnumpy()[0])
tvm_class_key = class_id_to_key[top1_tvm]
# Convert input to PyTorch variable and get PyTorch result for comparison
# torch_t0 = time.process_time()
# torch.set_num_threads(1)
for i in range(n_warmup+n_time):
with torch.no_grad():
torch_img = torch.from_numpy(img)
torch_t0 = time.time()
output = model(torch_img)
torch_time_spent.append(time.time() - torch_t0)
# Get top-1 result for PyTorch
top1_torch = np.argmax(output.numpy())
torch_class_key = class_id_to_key[top1_torch]
# torch_t1 = time.process_time()
# tvm_time = tvm_t1 - tvm_t0
# torch_time = torch_t1 - torch_t0
tvm_time = np.mean(tvm_time_spent[n_warmup:]) * 1000
torch_time = np.mean(torch_time_spent[n_warmup:]) * 1000
tvm_output_prob = softmax(tvm_output.asnumpy())
output_prob = softmax(output.numpy())
print("Relay top-1 id: {}, class name: {}, class probality: {}".format(top1_tvm, key_to_classname[tvm_class_key], tvm_output_prob[0][top1_tvm]))
print("Torch top-1 id: {}, class name: {}, class probality: {}".format(top1_torch, key_to_classname[torch_class_key], output_prob[0][top1_torch]))
print('Relay time(ms): {:.3f}'.format(tvm_time))
print('Torch time(ms): {:.3f}'.format(torch_time))