-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathmemory_reader.c
315 lines (290 loc) · 8.84 KB
/
memory_reader.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Copyright (c) Meta Platforms, Inc. and affiliates.
// SPDX-License-Identifier: LGPL-2.1-or-later
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "memory_reader.h"
#include "minmax.h"
/** Memory segment in a @ref drgn_memory_reader. */
struct drgn_memory_segment {
struct binary_tree_node node;
/** Address range of the segment in memory (inclusive). */
uint64_t min_address, max_address;
/**
* The address of the segment when it was added, before any truncations.
*
* This is always less than or equal to @ref
* drgn_memory_segment::min_address.
*/
uint64_t orig_min_address;
/** Read callback. */
drgn_memory_read_fn read_fn;
/** Argument to pass to @ref drgn_memory_segment::read_fn. */
void *arg;
};
static inline uint64_t
drgn_memory_segment_to_key(const struct drgn_memory_segment *entry)
{
return entry->min_address;
}
DEFINE_BINARY_SEARCH_TREE_FUNCTIONS(drgn_memory_segment_tree, node,
drgn_memory_segment_to_key,
binary_search_tree_scalar_cmp, splay);
void drgn_memory_reader_init(struct drgn_memory_reader *reader)
{
drgn_memory_segment_tree_init(&reader->virtual_segments);
drgn_memory_segment_tree_init(&reader->physical_segments);
}
static void free_memory_segment_tree(struct drgn_memory_segment_tree *tree)
{
struct drgn_memory_segment_tree_iterator it;
it = drgn_memory_segment_tree_first_post_order(tree);
while (it.entry) {
struct drgn_memory_segment *entry = it.entry;
it = drgn_memory_segment_tree_next_post_order(it);
free(entry);
}
}
void drgn_memory_reader_deinit(struct drgn_memory_reader *reader)
{
free_memory_segment_tree(&reader->physical_segments);
free_memory_segment_tree(&reader->virtual_segments);
}
bool drgn_memory_reader_empty(struct drgn_memory_reader *reader)
{
return (drgn_memory_segment_tree_empty(&reader->virtual_segments) &&
drgn_memory_segment_tree_empty(&reader->physical_segments));
}
struct drgn_error *
drgn_memory_reader_add_segment(struct drgn_memory_reader *reader,
uint64_t min_address, uint64_t max_address,
drgn_memory_read_fn read_fn, void *arg,
bool physical)
{
assert(min_address <= max_address);
struct drgn_memory_segment_tree *tree = (physical ?
&reader->physical_segments :
&reader->virtual_segments);
/*
* This is split into two steps: the first step handles an overlapping
* segment with address <= new address, and the second step handles
* overlapping segments with address > new address. In some cases, we
* can steal an existing segment instead of allocating a new one.
*/
struct drgn_memory_segment *stolen = NULL, *segment;
struct drgn_memory_segment *truncate_head = NULL, *truncate_tail = NULL;
struct drgn_memory_segment_tree_iterator it =
drgn_memory_segment_tree_search_le(tree, &min_address);
if (it.entry) {
if (max_address < it.entry->max_address) {
/*
* The new segment lies entirely within an existing
* segment, and part of the existing segment extends
* after the new segment (a "tail").
*/
struct drgn_memory_segment *tail =
malloc(sizeof(*tail));
if (!tail)
return &drgn_enomem;
if (it.entry->min_address == min_address) {
/*
* The new segment starts at the same address as
* the existing segment, so we can steal the
* existing segment and just add the tail.
*/
stolen = segment = it.entry;
} else {
/*
* Part of the existing segment extends before
* the new segment. We have to create the new
* segment and truncate the existing segment.
*/
segment = malloc(sizeof(*segment));
if (!segment) {
free(tail);
return &drgn_enomem;
}
truncate_tail = it.entry;
}
tail->min_address = max_address + 1;
tail->max_address = it.entry->max_address;
tail->orig_min_address = it.entry->orig_min_address;
tail->read_fn = it.entry->read_fn;
tail->arg = it.entry->arg;
drgn_memory_segment_tree_insert(tree, tail, NULL);
goto insert;
}
if (it.entry->min_address == min_address) {
/*
* The new segment subsumes an existing segment at the
* same address. We can steal the existing segment.
*/
stolen = it.entry;
} else if (min_address <= it.entry->max_address) {
/*
* The new segment overlaps an existing segment before
* it, and part of the existing segment extends before
* the new segment. We need to truncate the existing
* segment.
*/
truncate_tail = it.entry;
} else {
/*
* The new segment does not overlap any existing
* segments before it.
*/
}
it = drgn_memory_segment_tree_next(it);
} else {
/* The new segment will be the new first segment. */
it = drgn_memory_segment_tree_first(tree);
}
while (it.entry) {
if (max_address >= it.entry->max_address) {
/*
* The new segment subsumes an existing segment after
* it.
*/
if (stolen) {
/*
* We already stole a segment. We can delete the
* existing segment. Since we won't try to
* allocate a new segment later, it's safe to
* modify the tree now.
*/
struct drgn_memory_segment *existing_segment = it.entry;
it = drgn_memory_segment_tree_delete_iterator(tree, it);
free(existing_segment);
} else {
/*
* We haven't stolen a segment yet, so steal
* this one.
*
* This segment is the first existing segment
* that starts after the new segment, and the
* previous existing segment must start before
* the new segment (otherwise we would've stolen
* it). Therefore, this won't disturb the tree
* order.
*/
stolen = it.entry;
it = drgn_memory_segment_tree_next(it);
}
continue;
}
if (max_address >= it.entry->min_address) {
/*
* The new segment overlaps an existing segment after
* it, and part of the existing segment extends after
* the new segment. We need to truncate the beginning of
* the existing segment.
*/
truncate_head = it.entry;
}
/*
* The existing segment ends after the new segment ends. We're
* done.
*/
break;
}
if (stolen) {
segment = stolen;
} else {
segment = malloc(sizeof(*segment));
if (!segment)
return &drgn_enomem;
}
insert:
/*
* Now that we've allocated the new segment if necessary, we can safely
* modify the tree.
*/
if (truncate_head)
truncate_head->min_address = max_address + 1;
if (truncate_tail)
truncate_tail->max_address = min_address - 1;
segment->min_address = segment->orig_min_address = min_address;
segment->max_address = max_address;
segment->read_fn = read_fn;
segment->arg = arg;
/* If the segment is stolen, then it's already in the tree. */
if (!stolen)
drgn_memory_segment_tree_insert(tree, segment, NULL);
return NULL;
}
struct drgn_error *drgn_memory_reader_read(struct drgn_memory_reader *reader,
void *buf, uint64_t address,
size_t count, bool physical)
{
assert(count == 0 || count - 1 <= UINT64_MAX - address);
struct drgn_error *err;
struct drgn_memory_segment_tree *tree = (physical ?
&reader->physical_segments :
&reader->virtual_segments);
char *p = buf;
while (count > 0) {
struct drgn_memory_segment *segment =
drgn_memory_segment_tree_search_le(tree,
&address).entry;
if (!segment || segment->max_address < address) {
return drgn_error_format_fault(address,
"could not find %smemory segment",
physical ? "physical " : "");
}
size_t n = min((uint64_t)(count - 1),
segment->max_address - address) + 1;
err = segment->read_fn(p, address, n,
address - segment->orig_min_address,
segment->arg, physical);
if (err)
return err;
p += n;
address += n;
count -= n;
}
return NULL;
}
struct drgn_error *drgn_read_memory_file(void *buf, uint64_t address,
size_t count, uint64_t offset,
void *arg, bool physical)
{
struct drgn_memory_file_segment *file_segment = arg;
size_t file_count;
if (offset < file_segment->file_size) {
file_count = min((uint64_t)count,
file_segment->file_size - offset);
} else {
file_count = 0;
}
size_t zero_count = count - file_count;
if (!file_segment->zerofill && zero_count > 0) {
return drgn_error_create_fault("memory not saved in core dump",
address + file_count);
}
uint64_t file_offset = file_segment->file_offset + offset;
char *p = buf;
while (file_count) {
ssize_t ret = pread(file_segment->fd, p, file_count, file_offset);
if (ret == -1) {
if (errno == EINTR) {
continue;
} else if (errno == EIO && file_segment->eio_is_fault) {
return drgn_error_create_fault("could not read memory",
address);
} else {
return drgn_error_create_os("pread", errno, NULL);
}
} else if (ret == 0) {
return drgn_error_create_fault("short read from memory file",
address);
}
p += ret;
address += ret;
file_count -= ret;
file_offset += ret;
}
memset(p, '\0', zero_count);
return NULL;
}