-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
278 lines (241 loc) · 10.4 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import scipy.io
from tqdm import tqdm
from utils import convertToOneHot, LENGTH
import time
import random
import scipy.ndimage
class DataLoader:
classPatches, classSpectrum, classIndex = [], [], []
allPatch, allPatchLabel, allSpectrum = [], [], []
trainPatch, trainLabel, trainSpectrum, trainIndex = [], [], [], []
testPatch, testLabel, testSpectrum = [], [], []
numEachClass = []
trainNum = 0
testNum = 0
allLabeledNum = 0
def __init__(self, pathName, matName, patchSize, portionOrNum, ratio):
# load data
self.data = scipy.io.loadmat(pathName[0])[matName[0]]
self.label = scipy.io.loadmat(pathName[1])[matName[1]]
# prepare some basic propertities
self.patchSize = patchSize
self.numClasses = len(np.unique(self.label)) - 1
self.height = self.data.shape[0]
self.width = self.data.shape[1]
self.bands = self.data.shape[2]
for i in range(self.numClasses):
self.classPatches.append([])
self.classSpectrum.append([])
self.classIndex.append([])
# normalize and pad
self.data = self.data.astype(float)
for band in range(self.bands):
# print(np.min(self.data[:,:,band]))
self.data[:, :, band] = (self.data[:, :, band] - np.min(self.data[:, :, band])) / \
(np.max(self.data[:, :, band]) - np.min(self.data[:, :, band]))
padSize = patchSize // 2
# print(np.shape(self.data))
self.data = np.pad(self.data, ((padSize, padSize), (padSize, padSize), (0, 0)), "symmetric")
# print(np.shape(self.data))
# print(self.height,self.width,self.bands)
self.__slice()
with open("seeData.txt", "w+") as f:
last = np.shape(self.allPatch[0])
for a, i in enumerate(self.allPatch):
if last != np.shape(i):
print(a, "last: ", last, "i: ", np.shape(i))
last = np.shape(i)
if portionOrNum < 1:
self.__prepareDataByRatio(portionOrNum)
else:
self.__prepareDataByNum(portionOrNum)
if ratio != 0:
self.dataAugment(ratio)
self.trainLabel = np.array(self.trainLabel)
self.trainPatch = np.array(self.trainPatch)
self.trainSpectrum = np.array(self.trainSpectrum)
self.trainIndex = np.array(self.trainIndex)
self.trainSpectrum = np.reshape(self.trainSpectrum, [-1, self.bands, 1])
self.testLabel = np.array(self.testLabel)
self.testPatch = np.array(self.testPatch)
self.testSpectrum = np.array(self.testSpectrum)
self.testSpectrum = np.reshape(self.testSpectrum, [-1, self.bands, 1])
# print(np.shape(self.trainLabel))
self.trainLabel = convertToOneHot(self.trainLabel, num_classes=self.numClasses)
self.testLabel = convertToOneHot(self.testLabel, num_classes=self.numClasses)
self.trainNum = self.trainLabel.shape[0]
self.testNum = self.testLabel.shape[0]
for i in range(self.numClasses):
self.allLabeledNum += self.numEachClass[i]
def __patch(self, i, j):
heightSlice = slice(i, i + self.patchSize)
widthSlice = slice(j, j + self.patchSize)
return self.data[heightSlice, widthSlice, :]
def __slice(self):
unique = np.unique(self.label)
lut = np.zeros(np.max(unique) + 1, dtype=np.int)
for iter, i in enumerate(unique):
lut[i] = iter
self.label = lut[self.label]
with tqdm(total=self.height * self.width, desc="slicing ", ncols=LENGTH) as pbar:
for i in range(self.height):
for j in range(self.width):
tmpLabel = self.label[i, j]
tmpSpectrum = self.data[i, j, :]
tmpPatch = self.__patch(i, j)
self.allPatchLabel.append(tmpLabel)
self.allPatch.append(tmpPatch)
self.allSpectrum.append(tmpSpectrum)
if tmpLabel != 0:
self.classPatches[tmpLabel - 1].append(tmpPatch)
self.classSpectrum[tmpLabel - 1].append(tmpSpectrum)
self.classIndex[tmpLabel - 1].append(i * self.height + j)
pbar.update(1)
# self.numEachClass.append(0)
for i in range(self.numClasses):
self.numEachClass.append(len(self.classIndex[i]))
def __prepareDataByRatio(self, ratio):
np.random.seed(0)
with tqdm(total=self.numClasses, desc="dividing", ncols=LENGTH) as pbar:
for i in range(self.numClasses):
label = i
index = np.random.choice(self.numEachClass[label], int((self.numEachClass[label]) * ratio + 0.5),
replace=False)
self.trainPatch.extend(self.classPatches[label][j] for j in index)
self.trainSpectrum.extend(self.classSpectrum[label][j] for j in index)
self.trainLabel.extend(label for j in range(len(index)))
self.trainIndex.extend(self.classIndex[label][j] for j in index)
self.trainNum += len(index)
index = np.setdiff1d(range(self.numEachClass[label]), index)
self.testLabel.extend(label for j in range(len(index)))
self.testPatch.extend(self.classPatches[label][j] for j in index)
self.testSpectrum.extend(self.classSpectrum[label][j] for j in index)
self.testNum += len(index)
pbar.update(1)
def __prepareDataByNum(self, num):
np.random.seed(0)
with tqdm(total=self.numClasses, desc="dividing patches", ncols=LENGTH) as pbar:
for i in range(self.numClasses):
label = i
index = np.random.choice(self.numEachClass[label], int(num), replace=False)
self.trainPatch.extend(self.classPatches[label][j] for j in index)
self.trainSpectrum.extend(self.classSpectrum[label][j] for j in index)
self.trainLabel.extend(label for j in range(len(index)))
self.trainNum += len(index)
index = np.setdiff1d(range(self.numEachClass[label]), index)
self.testLabel.extend(label for j in range(len(index)))
self.testPatch.extend(self.classPatches[label][j] for j in index)
self.testSpectrum.extend(self.classSpectrum[label][j] for j in index)
self.testNum += len(index)
pbar.update(1)
def dataAugment(self, times):
trainNums = self.trainNum
with tqdm(total=int((times - 1) * trainNums), desc="augmenting", ncols=LENGTH) as pbar:
for i in range(int(times - 1)):
for k in range(trainNums):
j = random.randint(0, trainNums - 1)
augPatch = self.trainPatch[j]
augSpec = self.trainSpectrum[j]
augLabel = self.trainLabel[j]
chg = random.randint(0, 3)
if chg == 0:
augPatch = np.flipud(augPatch)
elif chg == 1:
augPatch = np.fliplr(augPatch)
elif chg == 2:
augPatch = augPatch + np.random.normal(0, 0.01, size=np.shape(augPatch))
augSpec = augSpec + np.random.normal(0, 0.01, size=np.shape(augSpec))
else:
angel = random.randrange(-180, 180, 30)
augPatch = scipy.ndimage.interpolation.rotate(augPatch, angel, axes=(1, 0),
reshape=False, output=None, order=3,
mode='constant', cval=0.0, prefilter=False)
self.trainPatch.append(augPatch)
self.trainSpectrum.append(augSpec)
self.trainLabel.append(augLabel)
pbar.set_postfix(trainsformNo=chg)
pbar.update(1)
def __dataAugment(self, times):
index = np.random.choice(range(self.trainNum), int(self.trainNum * times), replace=False)
udPatch, udLabel, udSpectrum = [], [], []
lrPatch, lrLabel, lrSpectrum = [], [], []
noisePatch, noiseLabel, noiseSpectrum = [], [], []
# angelPatch, angelLabel, angelSpectrum = [], [], []
with tqdm(total=len(index), desc="augmenting", ncols=LENGTH) as pbar:
for i in index:
udPatch.append(np.flipud(self.trainPatch[i]))
udSpectrum.append(self.trainSpectrum[i])
udLabel.append(self.trainLabel[i])
lrPatch.append(np.fliplr(self.trainPatch[i]))
lrSpectrum.append(self.trainSpectrum[i])
lrLabel.append(self.trainLabel[i])
noisePatch.append(self.trainPatch[i] + np.random.normal(0, 0.01, size=np.shape(self.trainPatch[0])))
noiseSpectrum.append(self.trainSpectrum[i])
noiseLabel.append(self.trainLabel[i])
# angel = random.randrange(-180, 180, 30)
# angelPatch.append(scipy.ndimage.interpolation.rotate(self.trainPatch[i], angel, axes=(1, 0),
# reshape=False, output=None, order=3,
# mode='constant', cval=0.0, prefilter=False))
# angelSpectrum.append(self.trainSpectrum[i])
# angelLabel.append(self.trainLabel[i])
pbar.update(1)
# print(np.shape(self.trainPatch),type(self.trainPatch))
self.trainPatch.extend(udPatch[i] for i in range(len(index)))
self.trainSpectrum.extend(udSpectrum[i] for i in range(len(index)))
self.trainLabel.extend(udLabel[i] for i in range(len(index)))
self.trainPatch.extend(lrPatch[i] for i in range(len(index)))
self.trainSpectrum.extend(lrSpectrum[i] for i in range(len(index)))
self.trainLabel.extend(lrLabel[i] for i in range(len(index)))
# print(np.shape(noisePatch), type(noisePatch))
self.tra466159inPatch.extend(noisePatch[i] for i in range(len(index)))
self.trainSpectrum.extend(noiseSpectrum[i] for i in range(len(index)))
self.trainLabel.extend(noiseLabel[i] for i in range(len(index)))
# print(np.shape(angelPatch), type(angelPatch))
# self.trainPatch.extend(angelPatch[i] for i in range(len(index)))
# self.trainSpectrum.extend(angelSpectrum[i] for i in range(len(index)))
# self.trainLabel.extend(angelLabel[i] for i in range(len(index)))
def loadTrainData(self):
return self.trainPatch, self.trainSpectrum, self.trainLabel
def loadTestData(self):
return self.testPatch, self.testSpectrum, self.testLabel
def loadAllPatch(self):
return self.allPatch, self.allSpectrum, self.allPatchLabel
def loadTrainPatchOnly(self):
return self.trainPatch, self.trainLabel
def loadTestPatchOnly(self):
return self.testPatch, self.testLabel
def loadAllPatchOnly(self):
return self.allPatch, self.allPatchLabel
def loadAllLabeledData(self, patchOnly=False):
patch = []
spectrum = []
label = []
index = []
for i in range(self.numClasses):
patch.extend(self.classPatches[i][j] for j in range(self.numEachClass[i]))
spectrum.extend(self.classSpectrum[i][j] for j in range(self.numEachClass[i]))
index.extend(self.classIndex[i][j] for j in range(self.numEachClass[i]))
label.extend(i for j in range(self.numEachClass[i]))
patch = np.array(patch)
spectrum = np.array(spectrum)
label = convertToOneHot(np.array(label))
index = np.array(index)
spectrum = np.reshape(spectrum, [-1, self.bands, 1])
if patchOnly:
return patch, label, index
else:
return patch, spectrum, label, index
if __name__ == "__main__":
pathName = []
pathName.append("./data/PaviaU.mat")
pathName.append("./data/PaviaU_gt.mat")
matName = []
matName.append("paviaU")
matName.append("paviaU_gt")
# print(np.random.permutation(10))
# print([5 for i in range(10)])
data = DataLoader(pathName, matName, 5, 0.2, 0)
patch, spectrum, label = data.loadAllLabeledData()
print(np.shape(patch), np.shape(spectrum), np.shape(label))
# print(np.shape(patch), np.shape(label))