-
Notifications
You must be signed in to change notification settings - Fork 409
/
data_loader.py
677 lines (566 loc) · 25.9 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import copy
import json
import os
import random
import traceback
from functools import lru_cache
from typing import List, TYPE_CHECKING
import cv2
import numpy as np
import torch
from PIL import Image
from PIL.ImageOps import exif_transpose
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from tqdm import tqdm
import albumentations as A
from toolkit.buckets import get_bucket_for_image_size, BucketResolution
from toolkit.config_modules import DatasetConfig, preprocess_dataset_raw_config
from toolkit.dataloader_mixins import CaptionMixin, BucketsMixin, LatentCachingMixin, Augments, CLIPCachingMixin
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
import platform
def is_native_windows():
return platform.system() == "Windows" and platform.release() != "2"
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
class RescaleTransform:
"""Transform to rescale images to the range [-1, 1]."""
def __call__(self, image):
return image * 2 - 1
class NormalizeSDXLTransform:
"""
Transforms the range from 0 to 1 to SDXL mean and std per channel based on avgs over thousands of images
Mean: tensor([ 0.0002, -0.1034, -0.1879])
Standard Deviation: tensor([0.5436, 0.5116, 0.5033])
"""
def __call__(self, image):
return transforms.Normalize(
mean=[0.0002, -0.1034, -0.1879],
std=[0.5436, 0.5116, 0.5033],
)(image)
class NormalizeSD15Transform:
"""
Transforms the range from 0 to 1 to SDXL mean and std per channel based on avgs over thousands of images
Mean: tensor([-0.1600, -0.2450, -0.3227])
Standard Deviation: tensor([0.5319, 0.4997, 0.5139])
"""
def __call__(self, image):
return transforms.Normalize(
mean=[-0.1600, -0.2450, -0.3227],
std=[0.5319, 0.4997, 0.5139],
)(image)
class ImageDataset(Dataset, CaptionMixin):
def __init__(self, config):
self.config = config
self.name = self.get_config('name', 'dataset')
self.path = self.get_config('path', required=True)
self.scale = self.get_config('scale', 1)
self.random_scale = self.get_config('random_scale', False)
self.include_prompt = self.get_config('include_prompt', False)
self.default_prompt = self.get_config('default_prompt', '')
if self.include_prompt:
self.caption_type = self.get_config('caption_ext', 'txt')
else:
self.caption_type = None
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else self.get_config('random_crop', False)
self.resolution = self.get_config('resolution', 256)
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
# this might take a while
print(f" - Preprocessing image dimensions")
new_file_list = []
bad_count = 0
for file in tqdm(self.file_list):
img = Image.open(file)
if int(min(img.size) * self.scale) >= self.resolution:
new_file_list.append(file)
else:
bad_count += 1
self.file_list = new_file_list
print(f" - Found {len(self.file_list)} images")
print(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.path}"
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path = self.file_list[index]
try:
img = exif_transpose(Image.open(img_path)).convert('RGB')
except Exception as e:
print(f"Error opening image: {img_path}")
print(e)
# make a noise image if we can't open it
img = Image.fromarray(np.random.randint(0, 255, (1024, 1024, 3), dtype=np.uint8))
# Downscale the source image first
img = img.resize((int(img.size[0] * self.scale), int(img.size[1] * self.scale)), Image.BICUBIC)
min_img_size = min(img.size)
if self.random_crop:
if self.random_scale and min_img_size > self.resolution:
if min_img_size < self.resolution:
print(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.resolution}, image file={img_path}")
scale_size = self.resolution
else:
scale_size = random.randint(self.resolution, int(min_img_size))
scaler = scale_size / min_img_size
scale_width = int((img.width + 5) * scaler)
scale_height = int((img.height + 5) * scaler)
img = img.resize((scale_width, scale_height), Image.BICUBIC)
img = transforms.RandomCrop(self.resolution)(img)
else:
img = transforms.CenterCrop(min_img_size)(img)
img = img.resize((self.resolution, self.resolution), Image.BICUBIC)
img = self.transform(img)
if self.include_prompt:
prompt = self.get_caption_item(index)
return img, prompt
else:
return img
class AugmentedImageDataset(ImageDataset):
def __init__(self, config):
super().__init__(config)
self.augmentations = self.get_config('augmentations', [])
self.augmentations = [Augments(**aug) for aug in self.augmentations]
augmentation_list = []
for aug in self.augmentations:
# make sure method name is valid
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}"
# get the method
method = getattr(A, aug.method_name)
# add the method to the list
augmentation_list.append(method(**aug.params))
self.aug_transform = A.Compose(augmentation_list)
self.original_transform = self.transform
# replace transform so we get raw pil image
self.transform = transforms.Compose([])
def __getitem__(self, index):
# get the original image
# image is a PIL image, convert to bgr
pil_image = super().__getitem__(index)
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# apply augmentations
augmented = self.aug_transform(image=open_cv_image)["image"]
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
# return both # return image as 0 - 1 tensor
return transforms.ToTensor()(pil_image), transforms.ToTensor()(augmented)
class PairedImageDataset(Dataset):
def __init__(self, config):
super().__init__()
self.config = config
self.size = self.get_config('size', 512)
self.path = self.get_config('path', None)
self.pos_folder = self.get_config('pos_folder', None)
self.neg_folder = self.get_config('neg_folder', None)
self.default_prompt = self.get_config('default_prompt', '')
self.network_weight = self.get_config('network_weight', 1.0)
self.pos_weight = self.get_config('pos_weight', self.network_weight)
self.neg_weight = self.get_config('neg_weight', self.network_weight)
supported_exts = ('.jpg', '.jpeg', '.png', '.webp', '.JPEG', '.JPG', '.PNG', '.WEBP')
if self.pos_folder is not None and self.neg_folder is not None:
# find matching files
self.pos_file_list = [os.path.join(self.pos_folder, file) for file in os.listdir(self.pos_folder) if
file.lower().endswith(supported_exts)]
self.neg_file_list = [os.path.join(self.neg_folder, file) for file in os.listdir(self.neg_folder) if
file.lower().endswith(supported_exts)]
matched_files = []
for pos_file in self.pos_file_list:
pos_file_no_ext = os.path.splitext(pos_file)[0]
for neg_file in self.neg_file_list:
neg_file_no_ext = os.path.splitext(neg_file)[0]
if os.path.basename(pos_file_no_ext) == os.path.basename(neg_file_no_ext):
matched_files.append((neg_file, pos_file))
break
# remove duplicates
matched_files = [t for t in (set(tuple(i) for i in matched_files))]
self.file_list = matched_files
print(f" - Found {len(self.file_list)} matching pairs")
else:
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(supported_exts)]
print(f" - Found {len(self.file_list)} images")
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
def get_all_prompts(self):
prompts = []
for index in range(len(self.file_list)):
prompts.append(self.get_prompt_item(index))
# remove duplicates
prompts = list(set(prompts))
return prompts
def __len__(self):
return len(self.file_list)
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def get_prompt_item(self, index):
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
# check if either has a prompt file
path_no_ext = os.path.splitext(img_path_or_tuple[0])[0]
prompt_path = path_no_ext + '.txt'
if not os.path.exists(prompt_path):
path_no_ext = os.path.splitext(img_path_or_tuple[1])[0]
prompt_path = path_no_ext + '.txt'
else:
img_path = img_path_or_tuple
# see if prompt file exists
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = path_no_ext + '.txt'
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
# remove any newlines
prompt = prompt.replace('\n', ', ')
# remove new lines for all operating systems
prompt = prompt.replace('\r', ', ')
prompt_split = prompt.split(',')
# remove empty strings
prompt_split = [p.strip() for p in prompt_split if p.strip()]
# join back together
prompt = ', '.join(prompt_split)
else:
prompt = self.default_prompt
return prompt
def __getitem__(self, index):
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
# load both images
img_path = img_path_or_tuple[0]
img1 = exif_transpose(Image.open(img_path)).convert('RGB')
img_path = img_path_or_tuple[1]
img2 = exif_transpose(Image.open(img_path)).convert('RGB')
# always use # 2 (pos)
bucket_resolution = get_bucket_for_image_size(
width=img2.width,
height=img2.height,
resolution=self.size,
# divisibility=self.
)
# images will be same base dimension, but may be trimmed. We need to shrink and then central crop
if bucket_resolution['width'] > bucket_resolution['height']:
img1_scale_to_height = bucket_resolution["height"]
img1_scale_to_width = int(img1.width * (bucket_resolution["height"] / img1.height))
img2_scale_to_height = bucket_resolution["height"]
img2_scale_to_width = int(img2.width * (bucket_resolution["height"] / img2.height))
else:
img1_scale_to_width = bucket_resolution["width"]
img1_scale_to_height = int(img1.height * (bucket_resolution["width"] / img1.width))
img2_scale_to_width = bucket_resolution["width"]
img2_scale_to_height = int(img2.height * (bucket_resolution["width"] / img2.width))
img1_crop_height = bucket_resolution["height"]
img1_crop_width = bucket_resolution["width"]
img2_crop_height = bucket_resolution["height"]
img2_crop_width = bucket_resolution["width"]
# scale then center crop images
img1 = img1.resize((img1_scale_to_width, img1_scale_to_height), Image.BICUBIC)
img1 = transforms.CenterCrop((img1_crop_height, img1_crop_width))(img1)
img2 = img2.resize((img2_scale_to_width, img2_scale_to_height), Image.BICUBIC)
img2 = transforms.CenterCrop((img2_crop_height, img2_crop_width))(img2)
# combine them side by side
img = Image.new('RGB', (img1.width + img2.width, max(img1.height, img2.height)))
img.paste(img1, (0, 0))
img.paste(img2, (img1.width, 0))
else:
img_path = img_path_or_tuple
img = exif_transpose(Image.open(img_path)).convert('RGB')
height = self.size
# determine width to keep aspect ratio
width = int(img.size[0] * height / img.size[1])
# Downscale the source image first
img = img.resize((width, height), Image.BICUBIC)
prompt = self.get_prompt_item(index)
img = self.transform(img)
return img, prompt, (self.neg_weight, self.pos_weight)
class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, CaptionMixin, Dataset):
def __init__(
self,
dataset_config: 'DatasetConfig',
batch_size=1,
sd: 'StableDiffusion' = None,
):
super().__init__()
self.dataset_config = dataset_config
folder_path = dataset_config.folder_path
self.dataset_path = dataset_config.dataset_path
if self.dataset_path is None:
self.dataset_path = folder_path
self.is_caching_latents = dataset_config.cache_latents or dataset_config.cache_latents_to_disk
self.is_caching_latents_to_memory = dataset_config.cache_latents
self.is_caching_latents_to_disk = dataset_config.cache_latents_to_disk
self.is_caching_clip_vision_to_disk = dataset_config.cache_clip_vision_to_disk
self.epoch_num = 0
self.sd = sd
if self.sd is None and self.is_caching_latents:
raise ValueError(f"sd is required for caching latents")
self.caption_type = dataset_config.caption_ext
self.default_caption = dataset_config.default_caption
self.random_scale = dataset_config.random_scale
self.scale = dataset_config.scale
self.batch_size = batch_size
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else dataset_config.random_crop
self.resolution = dataset_config.resolution
self.caption_dict = None
self.file_list: List['FileItemDTO'] = []
# check if dataset_path is a folder or json
if os.path.isdir(self.dataset_path):
file_list = [os.path.join(root, file) for root, _, files in os.walk(self.dataset_path) for file in files if file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
else:
# assume json
with open(self.dataset_path, 'r') as f:
self.caption_dict = json.load(f)
# keys are file paths
file_list = list(self.caption_dict.keys())
if self.dataset_config.num_repeats > 1:
# repeat the list
file_list = file_list * self.dataset_config.num_repeats
if self.dataset_config.standardize_images:
if self.sd.is_xl or self.sd.is_vega or self.sd.is_ssd:
NormalizeMethod = NormalizeSDXLTransform
else:
NormalizeMethod = NormalizeSD15Transform
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
NormalizeMethod(),
])
else:
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
# this might take a while
print(f"Dataset: {self.dataset_path}")
print(f" - Preprocessing image dimensions")
dataset_folder = self.dataset_path
if not os.path.isdir(self.dataset_path):
dataset_folder = os.path.dirname(dataset_folder)
dataset_size_file = os.path.join(dataset_folder, '.aitk_size.json')
dataloader_version = "0.1.1"
if os.path.exists(dataset_size_file):
try:
with open(dataset_size_file, 'r') as f:
self.size_database = json.load(f)
if "__version__" not in self.size_database or self.size_database["__version__"] != dataloader_version:
print("Upgrading size database to new version")
# old version, delete and recreate
self.size_database = {}
except Exception as e:
print(f"Error loading size database: {dataset_size_file}")
print(e)
self.size_database = {}
else:
self.size_database = {}
self.size_database["__version__"] = dataloader_version
bad_count = 0
for file in tqdm(file_list):
try:
file_item = FileItemDTO(
sd=self.sd,
path=file,
dataset_config=dataset_config,
dataloader_transforms=self.transform,
size_database=self.size_database,
dataset_root=dataset_folder,
)
self.file_list.append(file_item)
except Exception as e:
print(traceback.format_exc())
print(f"Error processing image: {file}")
print(e)
bad_count += 1
# save the size database
with open(dataset_size_file, 'w') as f:
json.dump(self.size_database, f)
print(f" - Found {len(self.file_list)} images")
# print(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.dataset_path}"
# handle x axis flips
if self.dataset_config.flip_x:
print(" - adding x axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the x axis
new_file_item = copy.deepcopy(file_item)
new_file_item.flip_x = True
self.file_list.append(new_file_item)
# handle y axis flips
if self.dataset_config.flip_y:
print(" - adding y axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the y axis
new_file_item = copy.deepcopy(file_item)
new_file_item.flip_y = True
self.file_list.append(new_file_item)
if self.dataset_config.flip_x or self.dataset_config.flip_y:
print(f" - Found {len(self.file_list)} images after adding flips")
self.setup_epoch()
def setup_epoch(self):
if self.epoch_num == 0:
# initial setup
# do not call for now
if self.dataset_config.buckets:
# setup buckets
self.setup_buckets()
if self.is_caching_latents:
self.cache_latents_all_latents()
if self.is_caching_clip_vision_to_disk:
self.cache_clip_vision_to_disk()
else:
if self.dataset_config.poi is not None:
# handle cropping to a specific point of interest
# setup buckets every epoch
self.setup_buckets(quiet=True)
self.epoch_num += 1
def __len__(self):
if self.dataset_config.buckets:
return len(self.batch_indices)
return len(self.file_list)
def _get_single_item(self, index) -> 'FileItemDTO':
file_item = copy.deepcopy(self.file_list[index])
file_item.load_and_process_image(self.transform)
file_item.load_caption(self.caption_dict)
return file_item
def __getitem__(self, item):
if self.dataset_config.buckets:
# for buckets we collate ourselves for now
# todo allow a scheduler to dynamically make buckets
# we collate ourselves
if len(self.batch_indices) - 1 < item:
# tried everything to solve this. No way to reset length when redoing things. Pick another index
item = random.randint(0, len(self.batch_indices) - 1)
idx_list = self.batch_indices[item]
return [self._get_single_item(idx) for idx in idx_list]
else:
# Dataloader is batching
return self._get_single_item(item)
def get_dataloader_from_datasets(
dataset_options,
batch_size=1,
sd: 'StableDiffusion' = None,
) -> DataLoader:
if dataset_options is None or len(dataset_options) == 0:
return None
datasets = []
has_buckets = False
is_caching_latents = False
dataset_config_list = []
# preprocess them all
for dataset_option in dataset_options:
if isinstance(dataset_option, DatasetConfig):
dataset_config_list.append(dataset_option)
else:
# preprocess raw data
split_configs = preprocess_dataset_raw_config([dataset_option])
for x in split_configs:
dataset_config_list.append(DatasetConfig(**x))
for config in dataset_config_list:
if config.type == 'image':
dataset = AiToolkitDataset(config, batch_size=batch_size, sd=sd)
datasets.append(dataset)
if config.buckets:
has_buckets = True
if config.cache_latents or config.cache_latents_to_disk:
is_caching_latents = True
else:
raise ValueError(f"invalid dataset type: {config.type}")
concatenated_dataset = ConcatDataset(datasets)
# todo build scheduler that can get buckets from all datasets that match
# todo and evenly distribute reg images
def dto_collation(batch: List['FileItemDTO']):
# create DTO batch
batch = DataLoaderBatchDTO(
file_items=batch
)
return batch
# check if is caching latents
dataloader_kwargs = {}
if is_native_windows():
dataloader_kwargs['num_workers'] = 0
else:
dataloader_kwargs['num_workers'] = dataset_config_list[0].num_workers
dataloader_kwargs['prefetch_factor'] = dataset_config_list[0].prefetch_factor
if has_buckets:
# make sure they all have buckets
for dataset in datasets:
assert dataset.dataset_config.buckets, f"buckets not found on dataset {dataset.dataset_config.folder_path}, you either need all buckets or none"
data_loader = DataLoader(
concatenated_dataset,
batch_size=None, # we batch in the datasets for now
drop_last=False,
shuffle=True,
collate_fn=dto_collation, # Use the custom collate function
**dataloader_kwargs
)
else:
data_loader = DataLoader(
concatenated_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=dto_collation,
**dataloader_kwargs
)
return data_loader
def trigger_dataloader_setup_epoch(dataloader: DataLoader):
# hacky but needed because of different types of datasets and dataloaders
dataloader.len = None
if isinstance(dataloader.dataset, list):
for dataset in dataloader.dataset:
if hasattr(dataset, 'datasets'):
for sub_dataset in dataset.datasets:
if hasattr(sub_dataset, 'setup_epoch'):
sub_dataset.setup_epoch()
sub_dataset.len = None
elif hasattr(dataset, 'setup_epoch'):
dataset.setup_epoch()
dataset.len = None
elif hasattr(dataloader.dataset, 'setup_epoch'):
dataloader.dataset.setup_epoch()
dataloader.dataset.len = None
elif hasattr(dataloader.dataset, 'datasets'):
dataloader.dataset.len = None
for sub_dataset in dataloader.dataset.datasets:
if hasattr(sub_dataset, 'setup_epoch'):
sub_dataset.setup_epoch()
sub_dataset.len = None
def get_dataloader_datasets(dataloader: DataLoader):
# hacky but needed because of different types of datasets and dataloaders
if isinstance(dataloader.dataset, list):
datasets = []
for dataset in dataloader.dataset:
if hasattr(dataset, 'datasets'):
for sub_dataset in dataset.datasets:
datasets.append(sub_dataset)
else:
datasets.append(dataset)
return datasets
elif hasattr(dataloader.dataset, 'datasets'):
return dataloader.dataset.datasets
else:
return [dataloader.dataset]