-
Notifications
You must be signed in to change notification settings - Fork 426
/
Copy pathstyle.py
232 lines (188 loc) · 8.69 KB
/
style.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
from torch import nn
import torch.nn.functional as F
import torch
from torchvision import models
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
def tensor_size(tensor):
channels = tensor.shape[1]
height = tensor.shape[2]
width = tensor.shape[3]
return channels * height * width
class ContentLoss(nn.Module):
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(ContentLoss, self).__init__()
self.single_target = single_target
self.device = device
self.loss = None
def forward(self, stacked_input):
if self.single_target:
split_size = stacked_input.size()[0] // 2
pred_layer, target_layer = torch.split(stacked_input, split_size, dim=0)
else:
split_size = stacked_input.size()[0] // 3
pred_layer, _, target_layer = torch.split(stacked_input, split_size, dim=0)
content_size = tensor_size(pred_layer)
# Define the separate loss function
def separated_loss(y_pred, y_true):
y_pred = y_pred.float()
y_true = y_true.float()
diff = torch.abs(y_pred - y_true)
l2 = torch.sum(diff ** 2, dim=[1, 2, 3], keepdim=True) / 2.0
return 2. * l2 / content_size
# Calculate itemized loss
pred_itemized_loss = separated_loss(pred_layer, target_layer)
# check if is nan
if torch.isnan(pred_itemized_loss).any():
print('pred_itemized_loss is nan')
# Calculate the mean of itemized loss
loss = torch.mean(pred_itemized_loss, dim=(1, 2, 3), keepdim=True)
self.loss = loss
return stacked_input
def convert_to_gram_matrix(inputs):
inputs = inputs.float()
shape = inputs.size()
batch, filters, height, width = shape[0], shape[1], shape[2], shape[3]
size = height * width * filters
feats = inputs.view(batch, filters, height * width)
feats_t = feats.transpose(1, 2)
grams_raw = torch.matmul(feats, feats_t)
gram_matrix = grams_raw / size
return gram_matrix
######################################################################
# Now the style loss module looks almost exactly like the content loss
# module. The style distance is also computed using the mean square
# error between :math:`G_{XL}` and :math:`G_{SL}`.
#
class StyleLoss(nn.Module):
def __init__(self, single_target=False, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(StyleLoss, self).__init__()
self.single_target = single_target
self.device = device
def forward(self, stacked_input):
input_dtype = stacked_input.dtype
stacked_input = stacked_input.float()
if self.single_target:
split_size = stacked_input.size()[0] // 2
preds, style_target = torch.split(stacked_input, split_size, dim=0)
else:
split_size = stacked_input.size()[0] // 3
preds, style_target, _ = torch.split(stacked_input, split_size, dim=0)
def separated_loss(y_pred, y_true):
gram_size = y_true.size(1) * y_true.size(2)
sum_axis = (1, 2)
diff = torch.abs(y_pred - y_true)
raw_loss = torch.sum(diff ** 2, dim=sum_axis, keepdim=True)
return raw_loss / gram_size
target_grams = convert_to_gram_matrix(style_target)
pred_grams = convert_to_gram_matrix(preds)
itemized_loss = separated_loss(pred_grams, target_grams)
# check if is nan
if torch.isnan(itemized_loss).any():
print('itemized_loss is nan')
# reshape itemized loss to be (batch, 1, 1, 1)
itemized_loss = torch.unsqueeze(itemized_loss, dim=1)
# gram_size = (tf.shape(target_grams)[1] * tf.shape(target_grams)[2])
loss = torch.mean(itemized_loss, dim=(1, 2), keepdim=True)
self.loss = loss.to(input_dtype).float()
return stacked_input.to(input_dtype)
# create a module to normalize input image so we can easily put it in a
# ``nn.Sequential``
class Normalization(nn.Module):
def __init__(self, device, dtype=torch.float32):
super(Normalization, self).__init__()
mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
std = torch.tensor([0.229, 0.224, 0.225]).to(device)
self.dtype = dtype
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, stacked_input):
# cast to float 32 if not already # only necessary when processing gram matrix
# if stacked_input.dtype != torch.float32:
# stacked_input = stacked_input.float()
# remove alpha channel if it exists
if stacked_input.shape[1] == 4:
stacked_input = stacked_input[:, :3, :, :]
# normalize to min and max of 0 - 1
in_min = torch.min(stacked_input)
in_max = torch.max(stacked_input)
# norm_stacked_input = (stacked_input - in_min) / (in_max - in_min)
# return (norm_stacked_input - self.mean) / self.std
return ((stacked_input - self.mean) / self.std).to(self.dtype)
class OutputLayer(nn.Module):
def __init__(self, name='output_layer'):
super(OutputLayer, self).__init__()
self.name = name
self.tensor = None
def forward(self, stacked_input):
self.tensor = stacked_input
return stacked_input
def get_style_model_and_losses(
single_target=True, # false has 3 targets, dont remember why i added this initially, this is old code
device='cuda' if torch.cuda.is_available() else 'cpu',
output_layer_name=None,
dtype=torch.float32
):
# content_layers = ['conv_4']
# style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
content_layers = ['conv2_2', 'conv3_2', 'conv4_2']
style_layers = ['conv2_1', 'conv3_1', 'conv4_1']
cnn = models.vgg19(pretrained=True).features.to(device, dtype=dtype).eval()
# set all weights in the model to our dtype
# for layer in cnn.children():
# layer.to(dtype=dtype)
# normalization module
normalization = Normalization(device, dtype=dtype).to(device)
# just in order to have an iterable access to or list of content/style
# losses
content_losses = []
style_losses = []
# assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential``
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
block = 1
children = list(cnn.children())
output_layer = None
for layer in children:
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv{block}_{i}_raw'
elif isinstance(layer, nn.ReLU):
# name = 'relu_{}'.format(i)
name = f'conv{block}_{i}' # target this
# The in-place version doesn't play very nicely with the ``ContentLoss``
# and ``StyleLoss`` we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
block += 1
i = 0
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
content_loss = ContentLoss(single_target=single_target, device=device)
model.add_module("content_loss_{}_{}".format(block, i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
style_loss = StyleLoss(single_target=single_target, device=device)
model.add_module("style_loss_{}_{}".format(block, i), style_loss)
style_losses.append(style_loss)
if output_layer_name is not None and name == output_layer_name:
output_layer = OutputLayer(name)
model.add_module("output_layer_{}_{}".format(block, i), output_layer)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss) or isinstance(model[i], OutputLayer):
break
model = model[:(i + 1)]
model.to(dtype=dtype)
return model, style_losses, content_losses, output_layer