forked from ETLCPP/etl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimap.h
1694 lines (1486 loc) · 57.3 KB
/
imap.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
///\file
/******************************************************************************
The MIT License(MIT)
Embedded Template Library.
https://github.com/ETLCPP/etl
http://www.etlcpp.com
Copyright(c) 2014 jwellbelove, rlindeman
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files(the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions :
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
******************************************************************************/
#ifndef __ETL_IMAP__
#define __ETL_IMAP__
#define __ETL_IN_IMAP_H__
#include <iterator>
#include <algorithm>
#include <functional>
#include <stddef.h>
#include "nullptr.h"
#include "private/map_base.h"
#include "type_traits.h"
#include "parameter_type.h"
#include "pool.h"
#if WIN32
#undef min
#endif
namespace etl
{
//***************************************************************************
/// A templated base for all etl::map types.
///\ingroup map
//***************************************************************************
template <typename TKey, typename TMapped, typename TKeyCompare>
class imap : public map_base
{
public:
typedef TKey key_type;
typedef std::pair<const TKey, TMapped> value_type;
typedef TMapped mapped_type;
typedef TKeyCompare key_compare;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef size_t size_type;
//*************************************************************************
/// How to compare two key elements.
//*************************************************************************
struct key_comp
{
bool operator ()(const key_type& key1, const key_type& key2) const
{
return key_compare()(key1, key2);
}
};
//*************************************************************************
/// How to compare two value elements.
//*************************************************************************
struct value_comp
{
bool operator ()(const value_type& value1, const value_type& value2) const
{
return key_compare()(value1.first, value2.first);
}
};
protected:
//*************************************************************************
/// The data node element in the map.
//*************************************************************************
struct Data_Node : public Node
{
explicit Data_Node(value_type value)
: value(value)
{
}
value_type value;
};
/// Defines the key value parameter type
typedef typename parameter_type<TKey>::type key_value_parameter_t;
//*************************************************************************
/// How to compare node elements.
//*************************************************************************
bool node_comp(const Data_Node& node1, const Data_Node& node2) const
{
return key_compare()(node1.value.first, node2.value.first);
}
bool node_comp(const Data_Node& node, const key_value_parameter_t& key) const
{
return key_compare()(node.value.first, key);
}
bool node_comp(const key_value_parameter_t& key, const Data_Node& node) const
{
return key_compare()(key, node.value.first);
}
private:
/// The pool of data nodes used in the map.
ipool<Data_Node>* p_node_pool;
//*************************************************************************
/// Downcast a Node* to a Data_Node*
//*************************************************************************
static Data_Node* data_cast(Node* p_node)
{
return static_cast<Data_Node*>(p_node);
}
//*************************************************************************
/// Downcast a Node& to a Data_Node&
//*************************************************************************
static Data_Node& data_cast(Node& node)
{
return static_cast<Data_Node&>(node);
}
//*************************************************************************
/// Downcast a const Node* to a const Data_Node*
//*************************************************************************
static const Data_Node* data_cast(const Node* p_node)
{
return static_cast<const Data_Node*>(p_node);
}
//*************************************************************************
/// Downcast a const Node& to a const Data_Node&
//*************************************************************************
static const Data_Node& data_cast(const Node& node)
{
return static_cast<const Data_Node&>(node);
}
public:
//*************************************************************************
/// iterator.
//*************************************************************************
class iterator : public std::iterator<std::bidirectional_iterator_tag, value_type>
{
public:
friend class imap;
iterator()
: p_map(nullptr)
, p_node(nullptr)
{
}
iterator(imap& map)
: p_map(&map)
, p_node(nullptr)
{
}
iterator(imap& map, Node* node)
: p_map(&map)
, p_node(node)
{
}
iterator(const iterator& other)
: p_map(other.p_map)
, p_node(other.p_node)
{
}
~iterator()
{
}
iterator& operator ++()
{
p_map->next_node(p_node);
return *this;
}
iterator operator ++(int)
{
iterator temp(*this);
p_map->next_node(p_node);
return temp;
}
iterator& operator --()
{
p_map->prev_node(p_node);
return *this;
}
iterator operator --(int)
{
iterator temp(*this);
p_map->prev_node(p_node);
return temp;
}
iterator operator =(const iterator& other)
{
p_map = other.p_map;
p_node = other.p_node;
return *this;
}
reference operator *()
{
return imap::data_cast(p_node)->value;
}
const_reference operator *() const
{
return imap::data_cast(p_node)->value;
}
pointer operator &()
{
return &(imap::data_cast(p_node)->value);
}
const_pointer operator &() const
{
return &(imap::data_cast(p_node)->value);
}
pointer operator ->()
{
return &(imap::data_cast(p_node)->value);
}
const_pointer operator ->() const
{
return &(imap::data_cast(p_node)->value);
}
friend bool operator == (const iterator& lhs, const iterator& rhs)
{
return lhs.p_map == rhs.p_map && lhs.p_node == rhs.p_node;
}
friend bool operator != (const iterator& lhs, const iterator& rhs)
{
return !(lhs == rhs);
}
private:
// Pointer to map associated with this iterator
imap* p_map;
// Pointer to the current node for this iterator
Node* p_node;
};
friend iterator;
//*************************************************************************
/// const_iterator
//*************************************************************************
class const_iterator : public std::iterator<std::bidirectional_iterator_tag, const value_type>
{
public:
friend class imap;
const_iterator()
: p_map(nullptr)
, p_node(nullptr)
{
}
const_iterator(const imap& map)
: p_map(&map)
, p_node(nullptr)
{
}
const_iterator(const imap& map, const Node* node)
: p_map(&map)
, p_node(node)
{
}
const_iterator(const typename imap::iterator& other)
: p_map(other.p_map)
, p_node(other.p_node)
{
}
const_iterator(const const_iterator& other)
: p_map(other.p_map)
, p_node(other.p_node)
{
}
~const_iterator()
{
}
const_iterator& operator ++()
{
p_map->next_node(p_node);
return *this;
}
const_iterator operator ++(int)
{
const_iterator temp(*this);
p_map->next_node(p_node);
return temp;
}
const_iterator& operator --()
{
p_map->prev_node(p_node);
return *this;
}
const_iterator operator --(int)
{
const_iterator temp(*this);
p_map->prev_node(p_node);
return temp;
}
const_iterator operator =(const const_iterator& other)
{
p_map = other.p_map;
p_node = other.p_node;
return *this;
}
const_reference operator *() const
{
return imap::data_cast(p_node)->value;
}
const_pointer operator &() const
{
return imap::data_cast(p_node)->value;
}
const_pointer operator ->() const
{
return &(imap::data_cast(p_node)->value);
}
friend bool operator == (const const_iterator& lhs, const const_iterator& rhs)
{
return lhs.p_map == rhs.p_map && lhs.p_node == rhs.p_node;
}
friend bool operator != (const const_iterator& lhs, const const_iterator& rhs)
{
return !(lhs == rhs);
}
private:
// Pointer to map associated with this iterator
const imap* p_map;
// Pointer to the current node for this iterator
const Node* p_node;
};
friend const_iterator;
typedef typename std::iterator_traits<iterator>::difference_type difference_type;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
//*************************************************************************
/// Gets the beginning of the map.
//*************************************************************************
iterator begin()
{
return iterator(*this, find_limit_node(root_node, kLeft));
}
//*************************************************************************
/// Gets the beginning of the map.
//*************************************************************************
const_iterator begin() const
{
return const_iterator(*this, find_limit_node(root_node, kLeft));
}
//*************************************************************************
/// Gets the end of the map.
//*************************************************************************
iterator end()
{
return iterator(*this);
}
//*************************************************************************
/// Gets the end of the map.
//*************************************************************************
const_iterator end() const
{
return const_iterator(*this);
}
//*************************************************************************
/// Gets the beginning of the map.
//*************************************************************************
const_iterator cbegin() const
{
return const_iterator(*this, find_limit_node(root_node, kLeft));
}
//*************************************************************************
/// Gets the end of the map.
//*************************************************************************
const_iterator cend() const
{
return const_iterator(*this);
}
//*************************************************************************
/// Gets the reverse beginning of the list.
//*************************************************************************
reverse_iterator rbegin()
{
return reverse_iterator(iterator(*this));
}
//*************************************************************************
/// Gets the reverse beginning of the list.
//*************************************************************************
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(const_iterator(*this));
}
//*************************************************************************
/// Gets the reverse end of the list.
//*************************************************************************
reverse_iterator rend()
{
return reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
}
//*************************************************************************
/// Gets the reverse end of the list.
//*************************************************************************
const_reverse_iterator rend() const
{
return const_reverse_iterator(iterator(*this, find_limit_node(root_node, kLeft)));
}
//*************************************************************************
/// Gets the reverse beginning of the list.
//*************************************************************************
const_reverse_iterator crbegin() const
{
return const_reverse_iterator(const_iterator(*this));
}
//*************************************************************************
/// Gets the reverse end of the list.
//*************************************************************************
const_reverse_iterator crend() const
{
return const_reverse_iterator(const_iterator(*this, find_limit_node(root_node, kLeft)));
}
//*********************************************************************
/// Returns a reference to the value at index 'key'
///\param i The index.
///\return A reference to the value at index 'key'
//*********************************************************************
mapped_type& operator [](const key_value_parameter_t& key)
{
iterator i_element = find(key);
if (!i_element.p_node)
{
// Doesn't exist, so create a new one.
i_element = insert(std::make_pair(key, mapped_type())).first;
}
return i_element->second;
}
//*********************************************************************
/// Returns a reference to the value at index 'key'
/// If asserts or exceptions are enabled, emits an etl::lookup_out_of_bounds if the key is not in the range.
///\param i The index.
///\return A reference to the value at index 'key'
//*********************************************************************
mapped_type& at(const key_value_parameter_t& key)
{
iterator i_element = find(key);
ETL_ASSERT(i_element.p_node != nullptr, ETL_ERROR(map_out_of_bounds));
return i_element->second;
}
//*********************************************************************
/// Returns a const reference to the value at index 'key'
/// If asserts or exceptions are enabled, emits an etl::lookup_out_of_bounds if the key is not in the range.
///\param i The index.
///\return A const reference to the value at index 'key'
//*********************************************************************
const mapped_type& at(const key_value_parameter_t& key) const
{
const_iterator i_element = find(key);
ETL_ASSERT(i_element.p_node != nullptr, ETL_ERROR(map_out_of_bounds));
return i_element->second;
}
//*********************************************************************
/// Assigns values to the map.
/// If asserts or exceptions are enabled, emits map_full if the map does not have enough free space.
/// If asserts or exceptions are enabled, emits map_iterator if the iterators are reversed.
///\param first The iterator to the first element.
///\param last The iterator to the last element + 1.
//*********************************************************************
template <typename TIterator>
void assign(TIterator first, TIterator last)
{
initialise();
insert(first, last);
}
//*************************************************************************
/// Clears the map.
//*************************************************************************
void clear()
{
initialise();
}
//*********************************************************************
/// Counts the number of elements that contain the key specified.
///\param key The key to search for.
///\return 1 if element was found, 0 otherwise.
//*********************************************************************
size_type count(const key_value_parameter_t& key) const
{
return find_node(root_node, key) ? 1 : 0;
}
//*************************************************************************
/// Returns two iterators with bounding (lower bound, upper bound) the key
/// provided
//*************************************************************************
std::pair<iterator, iterator> equal_range(const key_value_parameter_t& key)
{
return std::make_pair<iterator, iterator>(
iterator(*this, find_lower_node(root_node, key)),
iterator(*this, find_upper_node(root_node, key)));
}
//*************************************************************************
/// Returns two const iterators with bounding (lower bound, upper bound)
/// the key provided.
//*************************************************************************
std::pair<const_iterator, const_iterator> equal_range(const key_value_parameter_t& key) const
{
return std::make_pair<const_iterator, const_iterator>(
const_iterator(*this, find_lower_node(root_node, key)),
const_iterator(*this, find_upper_node(root_node, key)));
}
//*************************************************************************
/// Erases the value at the specified position.
//*************************************************************************
void erase(iterator position)
{
// Remove the node by its key
erase((*position).first);
}
//*************************************************************************
/// Erases the value at the specified position.
//*************************************************************************
iterator erase(const_iterator position)
{
// Find the parent node to be removed
Node*& reference_node = find_node(root_node, position.p_node);
iterator next(*this, reference_node);
++next;
remove_node(root_node, (*position).first);
return next;
}
//*************************************************************************
// Erase the key specified.
//*************************************************************************
size_type erase(const key_value_parameter_t& key)
{
// Return 1 if key value was found and removed
return remove_node(root_node, key) ? 1 : 0;
}
//*************************************************************************
/// Erases a range of elements.
//*************************************************************************
iterator erase(iterator first, iterator last)
{
iterator next;
while (first != last)
{
next = erase(const_iterator(first++));
}
return next;
}
//*************************************************************************
/// Erases a range of elements.
//*************************************************************************
iterator erase(const_iterator first, const_iterator last)
{
iterator next;
while (first != last)
{
next = erase(first++);
}
return next;
}
//*********************************************************************
/// Finds an element.
///\param key The key to search for.
///\return An iterator pointing to the element or end() if not found.
//*********************************************************************
iterator find(const key_value_parameter_t& key)
{
return iterator(*this, find_node(root_node, key));
}
//*********************************************************************
/// Finds an element.
///\param key The key to search for.
///\return An iterator pointing to the element or end() if not found.
//*********************************************************************
const_iterator find(const key_value_parameter_t& key) const
{
return const_iterator(*this, find_node(root_node, key));
}
//*********************************************************************
/// Inserts a value to the map.
/// If asserts or exceptions are enabled, emits map_full if the map is already full.
///\param value The value to insert.
//*********************************************************************
std::pair<iterator, bool> insert(const value_type& value)
{
// Default to no inserted node
Node* inserted_node = nullptr;
bool inserted = false;
ETL_ASSERT(!full(), ETL_ERROR(map_full));
// Get next available free node
Data_Node& node = allocate_data_node(value);
// Obtain the inserted node (might be nullptr if node was a duplicate)
inserted_node = insert_node(root_node, node);
inserted = inserted_node == &node;
// Insert node into tree and return iterator to new node location in tree
return std::make_pair(iterator(*this, inserted_node), inserted);
}
//*********************************************************************
/// Inserts a value to the map starting at the position recommended.
/// If asserts or exceptions are enabled, emits map_full if the map is already full.
///\param position The position that would precede the value to insert.
///\param value The value to insert.
//*********************************************************************
iterator insert(iterator, const value_type& value)
{
// Default to no inserted node
Node* inserted_node = nullptr;
ETL_ASSERT(!full(), ETL_ERROR(map_full));
// Get next available free node
Data_Node& node = allocate_data_node(value);
// Obtain the inserted node (might be nullptr if node was a duplicate)
inserted_node = insert_node(root_node, node);
// Insert node into tree and return iterator to new node location in tree
return iterator(*this, inserted_node);
}
//*********************************************************************
/// Inserts a value to the map starting at the position recommended.
/// If asserts or exceptions are enabled, emits map_full if the map is already full.
///\param position The position that would precede the value to insert.
///\param value The value to insert.
//*********************************************************************
iterator insert(const_iterator, const value_type& value)
{
// Default to no inserted node
Node* inserted_node = nullptr;
ETL_ASSERT(!full(), ETL_ERROR(map_full));
// Get next available free node
Data_Node& node = allocate_data_node(value);
// Obtain the inserted node (might be nullptr if node was a duplicate)
inserted_node = insert_node(root_node, node);
// Insert node into tree and return iterator to new node location in tree
return iterator(*this, inserted_node);
}
//*********************************************************************
/// Inserts a range of values to the map.
/// If asserts or exceptions are enabled, emits map_full if the map does not have enough free space.
///\param position The position to insert at.
///\param first The first element to add.
///\param last The last + 1 element to add.
//*********************************************************************
template <class TIterator>
void insert(TIterator first, TIterator last)
{
while (first != last)
{
insert(*first++);
}
}
//*********************************************************************
/// Returns an iterator pointing to the first element in the container
/// whose key is not considered to go before the key provided or end()
/// if all keys are considered to go before the key provided.
///\return An iterator pointing to the element not before key or end()
//*********************************************************************
iterator lower_bound(const key_value_parameter_t& key)
{
return iterator(*this, find_lower_node(root_node, key));
}
//*********************************************************************
/// Returns a const_iterator pointing to the first element in the
/// container whose key is not considered to go before the key provided
/// or end() if all keys are considered to go before the key provided.
///\return An const_iterator pointing to the element not before key or end()
//*********************************************************************
const_iterator lower_bound(const key_value_parameter_t& key) const
{
return const_iterator(*this, find_lower_node(root_node, key));
}
//*********************************************************************
/// Returns an iterator pointing to the first element in the container
/// whose key is not considered to go after the key provided or end()
/// if all keys are considered to go after the key provided.
///\return An iterator pointing to the element after key or end()
//*********************************************************************
iterator upper_bound(const key_value_parameter_t& key)
{
return iterator(*this, find_upper_node(root_node, key));
}
//*********************************************************************
/// Returns a const_iterator pointing to the first element in the
/// container whose key is not considered to go after the key provided
/// or end() if all keys are considered to go after the key provided.
///\return An const_iterator pointing to the element after key or end()
//*********************************************************************
const_iterator upper_bound(const key_value_parameter_t& key) const
{
return const_iterator(*this, find_upper_node(root_node, key));
}
//*************************************************************************
/// Assignment operator.
//*************************************************************************
imap& operator = (const imap& rhs)
{
// Skip if doing self assignment
if (this != &rhs)
{
assign(rhs.cbegin(), rhs.cend());
}
return *this;
}
protected:
//*************************************************************************
/// Constructor.
//*************************************************************************
imap(ipool<Data_Node>& node_pool, size_t max_size_)
: map_base(max_size_)
, p_node_pool(&node_pool)
{
}
//*************************************************************************
/// Initialise the map.
//*************************************************************************
void initialise()
{
if (!empty())
{
p_node_pool->release_all();
}
current_size = 0;
root_node = nullptr;
}
private:
//*************************************************************************
/// Allocate a Data_Node.
//*************************************************************************
Data_Node& allocate_data_node(value_type value) const
{
return *(p_node_pool->allocate(Data_Node(value)));
}
//*************************************************************************
/// Destroy a Data_Node.
//*************************************************************************
void destroy_data_node(Data_Node& node) const
{
p_node_pool->release(&node);
}
//*************************************************************************
/// Find the value matching the node provided
//*************************************************************************
Node* find_node(Node* position, const key_value_parameter_t& key)
{
Node* found = position;
while (found)
{
// Downcast found to Data_Node class for comparison and other operations
Data_Node& found_data_node = imap::data_cast(*found);
// Compare the node value to the current position value
if (node_comp(key, found_data_node))
{
// Keep searching for the node on the left
found = found->children[kLeft];
}
else if (node_comp(found_data_node, key))
{
// Keep searching for the node on the right
found = found->children[kRight];
}
else
{
// Node that matches the key provided was found, exit loop
break;
}
}
// Return the node found (might be nullptr)
return found;
}
//*************************************************************************
/// Find the value matching the node provided
//*************************************************************************
const Node* find_node(const Node* position, const key_value_parameter_t& key) const
{
const Node* found = position;
while (found)
{
// Downcast found to Data_Node class for comparison and other operations
const Data_Node& found_data_node = imap::data_cast(*found);
// Compare the node value to the current position value
if (node_comp(key, found_data_node))
{
// Keep searching for the node on the left
found = found->children[kLeft];
}
else if (node_comp(found_data_node, key))
{
// Keep searching for the node on the right
found = found->children[kRight];
}
else
{
// Node that matches the key provided was found, exit loop
break;
}
}
// Return the node found (might be nullptr)
return found;
}
//*************************************************************************
/// Find the reference node matching the node provided
//*************************************************************************
Node*& find_node(Node*& position, const Node* node)
{
Node* found = position;
while (found)
{
if (found->children[kLeft] == node)
{
return found->children[kLeft];
}
else if (found->children[kRight] == node)
{
return found->children[kRight];
}
else
{
// Downcast found to Data_Node class for comparison and other operations
Data_Node& found_data_node = imap::data_cast(*found);
const Data_Node& data_node = imap::data_cast(*node);
// Compare the node value to the current position value
if (node_comp(data_node, found_data_node))
{
// Keep searching for the node on the left
found = found->children[kLeft];
}
else if (node_comp(found_data_node, data_node))
{
// Keep searching for the node on the right
found = found->children[kRight];
}
else
{
// Return position provided (it matches the node)
return position;
}
}
}
// Return root node if nothing was found
return root_node;
}
//*************************************************************************
/// Find the parent node that contains the node provided in its left or
/// right tree
//*************************************************************************
Node* find_parent_node(Node* position, const Node* node)
{
// Default to no parent node found
Node* found = nullptr;
// If the position provided is the same as the node then there is no parent
if (position && node && position != node)
{
while (position)
{
// Is this position not the parent of the node we are looking for?
if (position->children[kLeft] != node &&
position->children[kRight] != node)
{
// Downcast node and position to Data_Node references for key comparisons
const Data_Node& node_data_node = imap::data_cast(*node);