forked from felt/tippecanoe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geometry.cpp
1875 lines (1547 loc) · 50.2 KB
/
geometry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <map>
#include <algorithm>
#include <cstdio>
#include <unistd.h>
#include <cmath>
#include <limits.h>
#include <sqlite3.h>
#include <mapbox/geometry/point.hpp>
#include <mapbox/geometry/multi_polygon.hpp>
#include <mapbox/geometry/wagyu/wagyu.hpp>
#include <mapbox/geometry/wagyu/quick_clip.hpp>
#include <mapbox/geometry/snap_rounding.hpp>
#include "geometry.hpp"
#include "projection.hpp"
#include "serial.hpp"
#include "main.hpp"
#include "options.hpp"
#include "errors.hpp"
#include "projection.hpp"
static int clip(double *x0, double *y0, double *x1, double *y1, double xmin, double ymin, double xmax, double ymax);
drawvec decode_geometry(char **meta, int z, unsigned tx, unsigned ty, long long *bbox, unsigned initial_x, unsigned initial_y) {
drawvec out;
bbox[0] = LLONG_MAX;
bbox[1] = LLONG_MAX;
bbox[2] = LLONG_MIN;
bbox[3] = LLONG_MIN;
long long wx = initial_x, wy = initial_y;
while (1) {
draw d;
deserialize_byte(meta, &d.op);
if (d.op == VT_END) {
break;
}
if (d.op == VT_MOVETO || d.op == VT_LINETO) {
long long dx, dy;
deserialize_long_long(meta, &dx);
deserialize_long_long(meta, &dy);
wx += dx * (1 << geometry_scale);
wy += dy * (1 << geometry_scale);
long long wwx = wx;
long long wwy = wy;
if (z != 0) {
wwx -= tx << (32 - z);
wwy -= ty << (32 - z);
}
if (wwx < bbox[0]) {
bbox[0] = wwx;
}
if (wwy < bbox[1]) {
bbox[1] = wwy;
}
if (wwx > bbox[2]) {
bbox[2] = wwx;
}
if (wwy > bbox[3]) {
bbox[3] = wwy;
}
d.x = wwx;
d.y = wwy;
}
out.push_back(d);
}
return out;
}
void to_tile_scale(drawvec &geom, int z, int detail) {
for (size_t i = 0; i < geom.size(); i++) {
geom[i].x = std::round((double) geom[i].x / (1LL << (32 - detail - z)));
geom[i].y = std::round((double) geom[i].y / (1LL << (32 - detail - z)));
}
}
drawvec from_tile_scale(drawvec const &geom, int z, int detail) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
draw d = geom[i];
d.x *= (1LL << (32 - detail - z));
d.y *= (1LL << (32 - detail - z));
out.push_back(d);
}
return out;
}
drawvec remove_noop(drawvec geom, int type, int shift) {
// first pass: remove empty linetos
long long x = 0, y = 0;
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_LINETO && std::round((double) geom[i].x / (1LL << shift)) == x && std::round((double) geom[i].y / (1LL << shift)) == y) {
continue;
}
if (geom[i].op == VT_CLOSEPATH) {
out.push_back(geom[i]);
} else { /* moveto or lineto */
out.push_back(geom[i]);
x = std::round((double) geom[i].x / (1LL << shift));
y = std::round((double) geom[i].y / (1LL << shift));
}
}
// second pass: remove unused movetos
if (type != VT_POINT) {
geom = out;
out.resize(0);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i + 1 >= geom.size()) {
continue;
}
if (geom[i + 1].op == VT_MOVETO) {
continue;
}
if (geom[i + 1].op == VT_CLOSEPATH) {
fprintf(stderr, "Shouldn't happen\n");
i++; // also remove unused closepath
continue;
}
}
out.push_back(geom[i]);
}
}
// second pass: remove empty movetos
if (type == VT_LINE) {
geom = out;
out.resize(0);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
if (i > 0 && geom[i - 1].op == VT_LINETO && std::round((double) geom[i - 1].x / (1LL << shift)) == std::round((double) geom[i].x / (1LL << shift)) && std::round((double) geom[i - 1].y / (1LL << shift)) == std::round((double) geom[i].y / (1LL << shift))) {
continue;
}
}
out.push_back(geom[i]);
}
}
return out;
}
double get_area_scaled(const drawvec &geom, size_t i, size_t j) {
const double max_exact_double = (double) ((1LL << 53) - 1);
// keep scaling the geometry down until we can calculate its area without overflow
for (long long scale = 2; scale < (1LL << 30); scale *= 2) {
long long bx = geom[i].x;
long long by = geom[i].y;
bool again = false;
// https://en.wikipedia.org/wiki/Shoelace_formula
double area = 0;
for (size_t k = i; k < j; k++) {
area += (double) ((geom[k].x - bx) / scale) * (double) ((geom[i + ((k - i + 1) % (j - i))].y - by) / scale);
if (std::fabs(area) >= max_exact_double) {
again = true;
break;
}
area -= (double) ((geom[k].y - by) / scale) * (double) ((geom[i + ((k - i + 1) % (j - i))].x - bx) / scale);
if (std::fabs(area) >= max_exact_double) {
again = true;
break;
}
}
if (again) {
continue;
} else {
area /= 2;
return area * scale * scale;
}
}
fprintf(stderr, "get_area_scaled: can't happen\n");
exit(EXIT_IMPOSSIBLE);
}
double get_area(const drawvec &geom, size_t i, size_t j) {
const double max_exact_double = (double) ((1LL << 53) - 1);
// Coordinates in `geom` are 40-bit integers, so there is no good way
// to multiply them without possible precision loss. Since they probably
// do not use the full precision, shift them nearer to the origin so
// their product is more likely to be exactly representable as a double.
//
// (In practice they are actually 34-bit integers: 32 bits for the
// Mercator world plane, plus another two bits so features can stick
// off either the left or right side. But that is still too many bits
// for the product to fit either in a 64-bit long long or in a
// double where the largest exact integer is 2^53.)
//
// If the intermediate calculation still exceeds 2^53, start trying to
// recalculate the area by scaling down the geometry. This will not
// produce as precise an area, but it will still be close, and the
// sign will be correct, which is more important, since the sign
// determines the winding order of the rings. We can then use that
// sign with this generally more precise area calculation.
long long bx = geom[i].x;
long long by = geom[i].y;
// https://en.wikipedia.org/wiki/Shoelace_formula
double area = 0;
bool overflow = false;
for (size_t k = i; k < j; k++) {
area += (double) (geom[k].x - bx) * (double) (geom[i + ((k - i + 1) % (j - i))].y - by);
if (std::fabs(area) >= max_exact_double) {
overflow = true;
}
area -= (double) (geom[k].y - by) * (double) (geom[i + ((k - i + 1) % (j - i))].x - bx);
if (std::fabs(area) >= max_exact_double) {
overflow = true;
}
}
area /= 2;
if (overflow) {
double scaled_area = get_area_scaled(geom, i, j);
if ((area < 0 && scaled_area > 0) || (area > 0 && scaled_area < 0)) {
area = -area;
}
}
return area;
}
double get_mp_area(drawvec &geom) {
double ret = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
ret += get_area(geom, i, j);
i = j - 1;
}
}
return ret;
}
static void decode_clipped(mapbox::geometry::multi_polygon<long long> &t, drawvec &out) {
out.clear();
for (size_t i = 0; i < t.size(); i++) {
for (size_t j = 0; j < t[i].size(); j++) {
drawvec ring;
for (size_t k = 0; k < t[i][j].size(); k++) {
ring.push_back(draw((k == 0) ? VT_MOVETO : VT_LINETO, t[i][j][k].x, t[i][j][k].y));
}
if (ring.size() > 0 && ring[ring.size() - 1] != ring[0]) {
fprintf(stderr, "Had to close ring\n");
ring.push_back(draw(VT_LINETO, ring[0].x, ring[0].y));
}
double area = get_area(ring, 0, ring.size());
if ((j == 0 && area < 0) || (j != 0 && area > 0)) {
fprintf(stderr, "Ring area has wrong sign: %f for %zu\n", area, j);
exit(EXIT_IMPOSSIBLE);
}
for (size_t k = 0; k < ring.size(); k++) {
out.push_back(ring[k]);
}
}
}
}
drawvec clean_or_clip_poly(drawvec &geom, int z, int buffer, bool clip) {
mapbox::geometry::wagyu::wagyu<long long> wagyu;
geom = remove_noop(geom, VT_POLYGON, 0);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j >= i + 4) {
mapbox::geometry::linear_ring<long long> lr;
for (size_t k = i; k < j; k++) {
lr.push_back(mapbox::geometry::point<long long>(geom[k].x, geom[k].y));
}
if (lr.size() >= 3) {
wagyu.add_ring(lr);
}
}
i = j - 1;
}
}
if (clip) {
long long area = 0xFFFFFFFF;
if (z != 0) {
area = 1LL << (32 - z);
}
long long clip_buffer = buffer * area / 256;
mapbox::geometry::linear_ring<long long> lr;
lr.push_back(mapbox::geometry::point<long long>(-clip_buffer, -clip_buffer));
lr.push_back(mapbox::geometry::point<long long>(-clip_buffer, area + clip_buffer));
lr.push_back(mapbox::geometry::point<long long>(area + clip_buffer, area + clip_buffer));
lr.push_back(mapbox::geometry::point<long long>(area + clip_buffer, -clip_buffer));
lr.push_back(mapbox::geometry::point<long long>(-clip_buffer, -clip_buffer));
wagyu.add_ring(lr, mapbox::geometry::wagyu::polygon_type_clip);
}
mapbox::geometry::multi_polygon<long long> result;
try {
wagyu.execute(mapbox::geometry::wagyu::clip_type_union, result, mapbox::geometry::wagyu::fill_type_positive, mapbox::geometry::wagyu::fill_type_positive);
} catch (std::runtime_error &e) {
FILE *f = fopen("/tmp/wagyu.log", "w");
fprintf(f, "%s\n", e.what());
fprintf(stderr, "%s\n", e.what());
fprintf(f, "[");
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j >= i + 4) {
mapbox::geometry::linear_ring<long long> lr;
if (i != 0) {
fprintf(f, ",");
}
fprintf(f, "[");
for (size_t k = i; k < j; k++) {
lr.push_back(mapbox::geometry::point<long long>(geom[k].x, geom[k].y));
if (k != i) {
fprintf(f, ",");
}
fprintf(f, "[%lld,%lld]", geom[k].x, geom[k].y);
}
fprintf(f, "]");
if (lr.size() >= 3) {
}
}
i = j - 1;
}
}
fprintf(f, "]");
fprintf(f, "\n\n\n\n\n");
fclose(f);
fprintf(stderr, "Internal error: Polygon cleaning failed. Log in /tmp/wagyu.log\n");
exit(EXIT_IMPOSSIBLE);
}
drawvec ret;
decode_clipped(result, ret);
return ret;
}
/* pnpoly:
Copyright (c) 1970-2003, Wm. Randolph Franklin
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimers.
Redistributions in binary form must reproduce the above copyright notice in the documentation and/or other materials provided with the distribution.
The name of W. Randolph Franklin may not be used to endorse or promote products derived from this Software without specific prior written permission.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
int pnpoly(const drawvec &vert, size_t start, size_t nvert, long long testx, long long testy) {
size_t i, j;
bool c = false;
for (i = 0, j = nvert - 1; i < nvert; j = i++) {
if (((vert[i + start].y > testy) != (vert[j + start].y > testy)) &&
(testx < (vert[j + start].x - vert[i + start].x) * (testy - vert[i + start].y) / (double) (vert[j + start].y - vert[i + start].y) + vert[i + start].x))
c = !c;
}
return c;
}
void check_polygon(drawvec &geom) {
geom = remove_noop(geom, VT_POLYGON, 0);
mapbox::geometry::multi_polygon<long long> mp;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j >= i + 4) {
mapbox::geometry::linear_ring<long long> lr;
for (size_t k = i; k < j; k++) {
lr.push_back(mapbox::geometry::point<long long>(geom[k].x, geom[k].y));
}
if (lr.size() >= 3) {
mapbox::geometry::polygon<long long> p;
p.push_back(lr);
mp.push_back(p);
}
}
i = j - 1;
}
}
mapbox::geometry::multi_polygon<long long> mp2 = mapbox::geometry::snap_round(mp, true, true);
if (mp != mp2) {
fprintf(stderr, "Internal error: self-intersecting polygon\n");
}
size_t outer_start = -1;
size_t outer_len = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
double area = get_area(geom, i, j);
#if 0
fprintf(stderr, "looking at %lld to %lld, area %f\n", (long long) i, (long long) j, area);
#endif
if (area > 0) {
outer_start = i;
outer_len = j - i;
} else {
for (size_t k = i; k < j; k++) {
if (!pnpoly(geom, outer_start, outer_len, geom[k].x, geom[k].y)) {
bool on_edge = false;
for (size_t l = outer_start; l < outer_start + outer_len; l++) {
if (geom[k].x == geom[l].x || geom[k].y == geom[l].y) {
on_edge = true;
break;
}
}
if (!on_edge) {
printf("%lld,%lld at %lld not in outer ring (%lld to %lld)\n", geom[k].x, geom[k].y, (long long) k, (long long) outer_start, (long long) (outer_start + outer_len));
#if 0
for (size_t l = outer_start; l < outer_start + outer_len; l++) {
fprintf(stderr, " %lld,%lld", geom[l].x, geom[l].y);
}
#endif
}
}
}
}
}
}
}
drawvec close_poly(drawvec &geom) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
if (j - 1 > i) {
if (geom[j - 1].x != geom[i].x || geom[j - 1].y != geom[i].y) {
fprintf(stderr, "Internal error: polygon not closed\n");
}
}
for (size_t n = i; n < j - 1; n++) {
out.push_back(geom[n]);
}
out.push_back(draw(VT_CLOSEPATH, 0, 0));
i = j - 1;
}
}
return out;
}
drawvec simple_clip_poly(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out;
mapbox::geometry::point<long long> min(minx, miny);
mapbox::geometry::point<long long> max(maxx, maxy);
mapbox::geometry::box<long long> bbox(min, max);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
mapbox::geometry::linear_ring<long long> ring;
for (size_t k = i; k < j; k++) {
ring.push_back(mapbox::geometry::point<long long>(geom[k].x, geom[k].y));
}
mapbox::geometry::linear_ring<long long> lr = mapbox::geometry::wagyu::quick_clip::quick_lr_clip(ring, bbox);
if (lr.size() > 0) {
for (size_t k = 0; k < lr.size(); k++) {
if (k == 0) {
out.push_back(draw(VT_MOVETO, lr[k].x, lr[k].y));
} else {
out.push_back(draw(VT_LINETO, lr[k].x, lr[k].y));
}
}
if (lr.size() > 0 && lr[0] != lr[lr.size() - 1]) {
out.push_back(draw(VT_LINETO, lr[0].x, lr[0].y));
}
}
i = j - 1;
} else {
fprintf(stderr, "Unexpected operation in polygon %d\n", (int) geom[i].op);
exit(EXIT_IMPOSSIBLE);
}
}
return out;
}
drawvec simple_clip_poly(drawvec &geom, int z, int buffer) {
long long area = 1LL << (32 - z);
long long clip_buffer = buffer * area / 256;
return simple_clip_poly(geom, -clip_buffer, -clip_buffer, area + clip_buffer, area + clip_buffer);
}
drawvec reduce_tiny_poly(drawvec &geom, int z, int detail, bool *reduced, double *accum_area, serial_feature *this_feature, serial_feature *tiny_feature) {
drawvec out;
const double pixel = (1LL << (32 - detail - z)) * (double) tiny_polygon_size;
bool includes_real = false;
bool includes_dust = false;
*reduced = true;
bool included_last_outer = false;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
double area = get_area(geom, i, j);
// XXX There is an ambiguity here: If the area of a ring is 0 and it is followed by holes,
// we don't know whether the area-0 ring was a hole too or whether it was the outer ring
// that these subsequent holes are somehow being subtracted from. I hope that if a polygon
// was simplified down to nothing, its holes also became nothing.
if (area != 0) {
// These are pixel coordinates, so area > 0 for the outer ring.
// If the outer ring of a polygon was reduced to a pixel, its
// inner rings must just have their area de-accumulated rather
// than being drawn since we don't really know where they are.
// i.e., this outer ring is small enough that we are including it
// in a tiny polygon rather than letting it represent itself,
// OR it is an inner ring and we haven't output an outer ring for it to be
// cut out of, so we are just subtracting its area from the tiny polygon
// rather than trying to deal with it geometrically
if ((area > 0 && area <= pixel * pixel) || (area < 0 && !included_last_outer)) {
// printf("area is only %f vs %lld so using square\n", area, pixel * pixel);
*accum_area += area;
if (area > 0 && *accum_area > pixel * pixel) {
// XXX use centroid;
out.push_back(draw(VT_MOVETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2));
out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2 + pixel, geom[i].y - pixel / 2));
out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2 + pixel, geom[i].y - pixel / 2 + pixel));
out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2 + pixel));
out.push_back(draw(VT_LINETO, geom[i].x - pixel / 2, geom[i].y - pixel / 2));
includes_dust = true;
*accum_area -= pixel * pixel;
}
if (area > 0) {
included_last_outer = false;
}
}
// i.e., this ring is large enough that it gets to represent itself
// or it is a tiny hole out of a real polygon, which we are still treating
// as a real geometry because otherwise we can accumulate enough tiny holes
// that we will drop the next several outer rings getting back up to 0.
else {
// printf("area is %f so keeping instead of %lld\n", area, pixel * pixel);
for (size_t k = i; k < j && k < geom.size(); k++) {
out.push_back(geom[k]);
}
// which means that the overall polygon has a real geometry,
// which means that it gets to be simplified.
*reduced = false;
includes_real = true;
if (area > 0) {
included_last_outer = true;
}
}
}
i = j - 1;
} else {
fprintf(stderr, "how did we get here with %d in %d?\n", geom[i].op, (int) geom.size());
for (size_t n = 0; n < geom.size(); n++) {
fprintf(stderr, "%d/%lld/%lld ", geom[n].op, geom[n].x, geom[n].y);
}
fprintf(stderr, "\n");
out.push_back(geom[i]);
includes_real = true;
}
}
if (!includes_real) {
if (includes_dust) {
// this geometry is just dust, so if there is another feature that
// contributed to the dust that is larger than this feature,
// keep its attributes instead of this one that just happened to be
// the one that hit the threshold of survival.
if (tiny_feature->extent > this_feature->extent) {
*this_feature = *tiny_feature;
tiny_feature->extent = 0;
}
} else {
// this is a feature that we are throwing away, so hang on to it
// attributes if it is bigger than the biggest one we threw away so far
if (this_feature->extent > tiny_feature->extent) {
*tiny_feature = *this_feature;
}
}
}
return out;
}
drawvec clip_point(drawvec &geom, int z, long long buffer) {
long long min = 0;
long long area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
return clip_point(geom, min, min, area, area);
}
drawvec clip_point(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].x >= minx && geom[i].y >= miny && geom[i].x <= maxx && geom[i].y <= maxy) {
out.push_back(geom[i]);
}
}
return out;
}
int quick_check(long long *bbox, int z, long long buffer) {
long long min = 0;
long long area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
// bbox entirely outside the tile
if (bbox[0] > area || bbox[1] > area) {
return 0;
}
if (bbox[2] < min || bbox[3] < min) {
return 0;
}
// bbox entirely within the tile
if (bbox[0] > min && bbox[1] > min && bbox[2] < area && bbox[3] < area) {
return 1;
}
// some overlap of edge
return 2;
}
bool point_within_tile(long long x, long long y, int z) {
// No adjustment for buffer, because the point must be
// strictly within the tile to appear exactly once
long long area = 1LL << (32 - z);
return x >= 0 && y >= 0 && x < area && y < area;
}
drawvec clip_lines(drawvec &geom, int z, long long buffer) {
long long min = 0;
long long area = 1LL << (32 - z);
min -= buffer * area / 256;
area += buffer * area / 256;
return clip_lines(geom, min, min, area, area);
}
drawvec clip_lines(drawvec &geom, long long minx, long long miny, long long maxx, long long maxy) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO) && geom[i].op == VT_LINETO) {
double x1 = geom[i - 1].x;
double y1 = geom[i - 1].y;
double x2 = geom[i - 0].x;
double y2 = geom[i - 0].y;
int c = clip(&x1, &y1, &x2, &y2, minx, miny, maxx, maxy);
if (c > 1) { // clipped
out.push_back(draw(VT_MOVETO, x1, y1));
out.push_back(draw(VT_LINETO, x2, y2));
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
} else if (c == 1) { // unchanged
out.push_back(geom[i]);
} else { // clipped away entirely
out.push_back(draw(VT_MOVETO, geom[i].x, geom[i].y));
}
} else {
out.push_back(geom[i]);
}
}
return out;
}
static double square_distance_from_line(long long point_x, long long point_y, long long segA_x, long long segA_y, long long segB_x, long long segB_y) {
double p2x = segB_x - segA_x;
double p2y = segB_y - segA_y;
double something = p2x * p2x + p2y * p2y;
double u = 0 == something ? 0 : ((point_x - segA_x) * p2x + (point_y - segA_y) * p2y) / something;
if (u > 1) {
u = 1;
} else if (u < 0) {
u = 0;
}
double x = segA_x + u * p2x;
double y = segA_y + u * p2y;
double dx = x - point_x;
double dy = y - point_y;
return dx * dx + dy * dy;
}
// https://github.com/Project-OSRM/osrm-backend/blob/733d1384a40f/Algorithms/DouglasePeucker.cpp
static void douglas_peucker(drawvec &geom, int start, int n, double e, size_t kept, size_t retain) {
e = e * e;
std::stack<int> recursion_stack;
{
int left_border = 0;
int right_border = 1;
// Sweep linerarily over array and identify those ranges that need to be checked
do {
if (geom[start + right_border].necessary) {
recursion_stack.push(left_border);
recursion_stack.push(right_border);
left_border = right_border;
}
++right_border;
} while (right_border < n);
}
while (!recursion_stack.empty()) {
// pop next element
int second = recursion_stack.top();
recursion_stack.pop();
int first = recursion_stack.top();
recursion_stack.pop();
double max_distance = -1;
int farthest_element_index = second;
// find index idx of element with max_distance
int i;
for (i = first + 1; i < second; i++) {
double temp_dist = square_distance_from_line(geom[start + i].x, geom[start + i].y, geom[start + first].x, geom[start + first].y, geom[start + second].x, geom[start + second].y);
double distance = std::fabs(temp_dist);
if ((distance > e || kept < retain) && distance > max_distance) {
farthest_element_index = i;
max_distance = distance;
}
}
if (max_distance >= 0) {
// mark idx as necessary
geom[start + farthest_element_index].necessary = 1;
kept++;
if (1 < farthest_element_index - first) {
recursion_stack.push(first);
recursion_stack.push(farthest_element_index);
}
if (1 < second - farthest_element_index) {
recursion_stack.push(farthest_element_index);
recursion_stack.push(second);
}
}
}
}
// If any line segment crosses a tile boundary, add a node there
// that cannot be simplified away, to prevent the edge of any
// feature from jumping abruptly at the tile boundary.
drawvec impose_tile_boundaries(drawvec &geom, long long extent) {
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (i > 0 && geom[i].op == VT_LINETO && (geom[i - 1].op == VT_MOVETO || geom[i - 1].op == VT_LINETO)) {
double x1 = geom[i - 1].x;
double y1 = geom[i - 1].y;
double x2 = geom[i - 0].x;
double y2 = geom[i - 0].y;
int c = clip(&x1, &y1, &x2, &y2, 0, 0, extent, extent);
if (c > 1) { // clipped
if (x1 != geom[i - 1].x || y1 != geom[i - 1].y) {
out.push_back(draw(VT_LINETO, x1, y1));
out[out.size() - 1].necessary = 1;
}
if (x2 != geom[i - 0].x || y2 != geom[i - 0].y) {
out.push_back(draw(VT_LINETO, x2, y2));
out[out.size() - 1].necessary = 1;
}
}
}
out.push_back(geom[i]);
}
return out;
}
drawvec simplify_lines(drawvec &geom, int z, int detail, bool mark_tile_bounds, double simplification, size_t retain, drawvec const &shared_nodes) {
int res = 1 << (32 - detail - z);
long long area = 1LL << (32 - z);
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
geom[i].necessary = 1;
} else if (geom[i].op == VT_LINETO) {
geom[i].necessary = 0;
} else {
geom[i].necessary = 1;
}
if (prevent[P_SIMPLIFY_SHARED_NODES]) {
auto pt = std::lower_bound(shared_nodes.begin(), shared_nodes.end(), geom[i]);
if (pt != shared_nodes.end() && *pt == geom[i]) {
geom[i].necessary = true;
}
}
}
if (mark_tile_bounds) {
geom = impose_tile_boundaries(geom, area);
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {
size_t j;
for (j = i + 1; j < geom.size(); j++) {
if (geom[j].op != VT_LINETO) {
break;
}
}
geom[i].necessary = 1;
geom[j - 1].necessary = 1;
// empirical mapping from douglas-peucker simplifications
// to visvalingam simplifications that yield similar
// output sizes
double sim = simplification * (0.1596 * z + 0.878);
double scale = (res * sim) * (res * sim);
scale = exp(1.002 * log(scale) + 0.3043);
if (j - i > 1) {
if (additional[A_VISVALINGAM]) {
visvalingam(geom, i, j, scale, retain);
} else {
douglas_peucker(geom, i, j - i, res * simplification, 2, retain);
}
}
i = j - 1;
}
}
drawvec out;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].necessary) {
out.push_back(geom[i]);
}
}
return out;
}
drawvec reorder_lines(drawvec &geom) {
// Only reorder simple linestrings with a single moveto
if (geom.size() == 0) {
return geom;
}
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO) {