forked from 3b1b/videos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplex_multiplication_article.py
250 lines (213 loc) · 7.96 KB
/
complex_multiplication_article.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#!/usr/bin/env python
import numpy as np
import itertools as it
from copy import deepcopy
import sys
from manim_imports_ext import *
from functools import reduce
DEFAULT_PLANE_CONFIG = {
"stroke_width" : 2*DEFAULT_STROKE_WIDTH
}
class SuccessiveComplexMultiplications(ComplexMultiplication):
args_list = [
(complex(1, 2), complex(1, -2)),
(complex(-2, 1), complex(-2, -1)),
]
@staticmethod
def args_to_string(*multipliers):
return "_".join([str(m)[1:-1] for m in multipliers])
@staticmethod
def string_to_args(arg_string):
args_string.replac("i", "j")
return list(map(copmlex, arg_string.split()))
def construct(self, *multipliers):
norm = abs(reduce(op.mul, multipliers, 1))
shrink_factor = FRAME_X_RADIUS/max(FRAME_X_RADIUS, norm)
plane_config = {
"density" : norm*DEFAULT_POINT_DENSITY_1D,
"unit_to_spatial_width" : shrink_factor,
"x_radius" : shrink_factor*FRAME_X_RADIUS,
"y_radius" : shrink_factor*FRAME_Y_RADIUS,
}
ComplexMultiplication.construct(self, multipliers[0], **plane_config)
one_dot = self.draw_dot("1", 1, True)
one_dot_copy = deepcopy(one_dot)
for multiplier, count in zip(multipliers, it.count()):
if multiplier == multipliers[0]:
tex = "z"
elif np.conj(multiplier) == multipliers[0]:
tex = "\\bar z"
else:
tex = "z_%d"%count
self.draw_dot(tex, multiplier)
for multiplier in multipliers:
self.multiplier = multiplier
self.apply_multiplication()
new_one = deepcopy(one_dot_copy)
self.mobjects_to_move_without_molding.append(new_one)
class ShowComplexPower(SuccessiveComplexMultiplications):
args_list = [
(complex(0, 1), 1),
(complex(0, 1), 2),
(np.exp(complex(0, 2*np.pi/5)), 1),
(np.exp(complex(0, 2*np.pi/5)), 5),
(np.exp(complex(0, 4*np.pi/5)), 5),
(np.exp(complex(0, -2*np.pi/5)), 5),
(complex(1, np.sqrt(3)), 1),
(complex(1, np.sqrt(3)), 3),
]
@staticmethod
def args_to_string(multiplier, num_repeats):
start = ComplexMultiplication.args_to_string(multiplier)
return start + "ToThe%d"%num_repeats
@staticmethod
def string_to_args(arg_string):
parts = arg_string.split()
if len(parts) < 2 or len(parts) > 3:
raise Exception("Invalid arguments")
multiplier = complex(parts[0])
num_repeats = int(parts[1])
return multiplier, num_repeats
def construct(self, multiplier, num_repeats):
SuccessiveComplexMultiplications.construct(
[multiplier]*num_repeats
)
class ComplexDivision(ComplexMultiplication):
args_list = [
complex(np.sqrt(3), 1),
complex(1./3, -1./3),
complex(1, 2),
]
def construct(self, num):
ComplexMultiplication.construct(self, 1./num)
self.draw_dot("1", 1, False),
self.draw_dot("z", num, True)
self.apply_multiplication()
class ConjugateDivisionExample(ComplexMultiplication):
args_list = [
complex(1, 2),
]
def construct(self, num):
ComplexMultiplication.construct(self, np.conj(num), radius = 2.5*FRAME_X_RADIUS)
self.draw_dot("1", 1, True)
self.draw_dot("\\bar z", self.multiplier)
self.apply_multiplication()
self.multiplier = 1./(abs(num)**2)
self.anim_config["path_func"] = straight_path
self.apply_multiplication()
self.wait()
class DrawSolutionsToZToTheNEqualsW(Scene):
@staticmethod
def args_to_string(n, w):
return str(n) + "_" + complex_string(w)
@staticmethod
def string_to_args(args_string):
parts = args_string.split()
return int(parts[0]), complex(parts[1])
def construct(self, n, w):
w = complex(w)
plane_config = DEFAULT_PLANE_CONFIG.copy()
norm = abs(w)
theta = np.log(w).imag
radius = norm**(1./n)
zoom_value = (FRAME_Y_RADIUS-0.5)/radius
plane_config["unit_to_spatial_width"] = zoom_value
plane = ComplexPlane(**plane_config)
circle = Circle(
radius = radius*zoom_value,
stroke_width = plane.stroke_width
)
solutions = [
radius*np.exp(complex(0, 1)*(2*np.pi*k + theta)/n)
for k in range(n)
]
points = list(map(plane.number_to_point, solutions))
dots = [
Dot(point, color = BLUE_B, radius = 0.1)
for point in points
]
lines = [Line(*pair) for pair in adjacent_pairs(points)]
self.add(plane, circle, *dots+lines)
self.add(*plane.get_coordinate_labels())
class DrawComplexAngleAndMagnitude(Scene):
args_list = [
(
("1+i\\sqrt{3}", complex(1, np.sqrt(3)) ),
("\\frac{\\sqrt{3}}{2} - \\frac{1}{2}i", complex(np.sqrt(3)/2, -1./2)),
),
(("1+i", complex(1, 1)),),
]
@staticmethod
def args_to_string(*reps_and_nums):
return "--".join([
complex_string(num)
for rep, num in reps_and_nums
])
def construct(self, *reps_and_nums):
radius = max([abs(n.imag) for r, n in reps_and_nums]) + 1
plane_config = {
"color" : "grey",
"unit_to_spatial_width" : FRAME_Y_RADIUS / radius,
}
plane_config.update(DEFAULT_PLANE_CONFIG)
self.plane = ComplexPlane(**plane_config)
coordinates = self.plane.get_coordinate_labels()
# self.plane.add_spider_web()
self.add(self.plane, *coordinates)
for rep, num in reps_and_nums:
self.draw_number(rep, num)
self.add_angle_label(num)
self.add_lines(rep, num)
def draw_number(self, tex_representation, number):
point = self.plane.number_to_point(number)
dot = Dot(point)
label = OldTex(tex_representation)
max_width = 0.8*self.plane.unit_to_spatial_width
if label.get_width() > max_width:
label.set_width(max_width)
dot_to_label_dir = RIGHT if point[0] > 0 else LEFT
edge = label.get_edge_center(-dot_to_label_dir)
buff = 0.1
label.shift(point - edge + buff*dot_to_label_dir)
label.set_color(YELLOW)
self.add_mobjects_among(list(locals().values()))
def add_angle_label(self, number):
arc = Arc(
np.log(number).imag,
radius = 0.2
)
self.add_mobjects_among(list(locals().values()))
def add_lines(self, tex_representation, number):
point = self.plane.number_to_point(number)
x_line, y_line, num_line = [
Line(
start, end,
color = color,
stroke_width = self.plane.stroke_width
)
for start, end, color in zip(
[ORIGIN, point[0]*RIGHT, ORIGIN],
[point[0]*RIGHT, point, point],
[BLUE_D, GOLD_E, WHITE]
)
]
# tex_representation.replace("i", "")
# if "+" in tex_representation:
# tex_parts = tex_representation.split("+")
# elif "-" in tex_representation:
# tex_parts = tex_representation.split("-")
# x_label, y_label = map(Tex, tex_parts)
# for label in x_label, y_label:
# label.set_height(0.5)
# x_label.next_to(x_line, point[1]*DOWN/abs(point[1]))
# y_label.next_to(y_line, point[0]*RIGHT/abs(point[0]))
norm = get_norm(point)
brace = Underbrace(ORIGIN, ORIGIN+norm*RIGHT)
if point[1] > 0:
brace.rotate(np.pi, RIGHT)
brace.rotate(np.log(number).imag)
norm_label = OldTex("%.1f"%abs(number))
norm_label.scale(0.5)
axis = OUT if point[1] > 0 else IN
norm_label.next_to(brace, rotate_vector(point, np.pi/2, axis))
self.add_mobjects_among(list(locals().values()))