forked from AiuniAI/Unique3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
normal_to_height_map.py
203 lines (159 loc) · 6.24 KB
/
normal_to_height_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# code modified from https://github.com/YertleTurtleGit/depth-from-normals
import numpy as np
import cv2 as cv
from multiprocessing.pool import ThreadPool as Pool
from multiprocessing import cpu_count
from typing import Tuple, List, Union
import numba
def calculate_gradients(
normals: np.ndarray, mask: np.ndarray
) -> Tuple[np.ndarray, np.ndarray]:
horizontal_angle_map = np.arccos(np.clip(normals[:, :, 0], -1, 1))
left_gradients = np.zeros(normals.shape[:2])
left_gradients[mask != 0] = (1 - np.sin(horizontal_angle_map[mask != 0])) * np.sign(
horizontal_angle_map[mask != 0] - np.pi / 2
)
vertical_angle_map = np.arccos(np.clip(normals[:, :, 1], -1, 1))
top_gradients = np.zeros(normals.shape[:2])
top_gradients[mask != 0] = -(1 - np.sin(vertical_angle_map[mask != 0])) * np.sign(
vertical_angle_map[mask != 0] - np.pi / 2
)
return left_gradients, top_gradients
@numba.jit(nopython=True)
def integrate_gradient_field(
gradient_field: np.ndarray, axis: int, mask: np.ndarray
) -> np.ndarray:
heights = np.zeros(gradient_field.shape)
for d1 in numba.prange(heights.shape[1 - axis]):
sum_value = 0
for d2 in range(heights.shape[axis]):
coordinates = (d1, d2) if axis == 1 else (d2, d1)
if mask[coordinates] != 0:
sum_value = sum_value + gradient_field[coordinates]
heights[coordinates] = sum_value
else:
sum_value = 0
return heights
def calculate_heights(
left_gradients: np.ndarray, top_gradients, mask: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
left_heights = integrate_gradient_field(left_gradients, 1, mask)
right_heights = np.fliplr(
integrate_gradient_field(np.fliplr(-left_gradients), 1, np.fliplr(mask))
)
top_heights = integrate_gradient_field(top_gradients, 0, mask)
bottom_heights = np.flipud(
integrate_gradient_field(np.flipud(-top_gradients), 0, np.flipud(mask))
)
return left_heights, right_heights, top_heights, bottom_heights
def combine_heights(*heights: np.ndarray) -> np.ndarray:
return np.mean(np.stack(heights, axis=0), axis=0)
def rotate(matrix: np.ndarray, angle: float) -> np.ndarray:
h, w = matrix.shape[:2]
center = (w / 2, h / 2)
rotation_matrix = cv.getRotationMatrix2D(center, angle, 1.0)
corners = cv.transform(
np.array([[[0, 0], [w, 0], [w, h], [0, h]]]), rotation_matrix
)[0]
_, _, w, h = cv.boundingRect(corners)
rotation_matrix[0, 2] += w / 2 - center[0]
rotation_matrix[1, 2] += h / 2 - center[1]
result = cv.warpAffine(matrix, rotation_matrix, (w, h), flags=cv.INTER_LINEAR)
return result
def rotate_vector_field_normals(normals: np.ndarray, angle: float) -> np.ndarray:
angle = np.radians(angle)
cos_angle = np.cos(angle)
sin_angle = np.sin(angle)
rotated_normals = np.empty_like(normals)
rotated_normals[:, :, 0] = (
normals[:, :, 0] * cos_angle - normals[:, :, 1] * sin_angle
)
rotated_normals[:, :, 1] = (
normals[:, :, 0] * sin_angle + normals[:, :, 1] * cos_angle
)
return rotated_normals
def centered_crop(image: np.ndarray, target_resolution: Tuple[int, int]) -> np.ndarray:
return image[
(image.shape[0] - target_resolution[0])
// 2 : (image.shape[0] - target_resolution[0])
// 2
+ target_resolution[0],
(image.shape[1] - target_resolution[1])
// 2 : (image.shape[1] - target_resolution[1])
// 2
+ target_resolution[1],
]
def integrate_vector_field(
vector_field: np.ndarray,
mask: np.ndarray,
target_iteration_count: int,
thread_count: int,
) -> np.ndarray:
shape = vector_field.shape[:2]
angles = np.linspace(0, 90, target_iteration_count, endpoint=False)
def integrate_vector_field_angles(angles: List[float]) -> np.ndarray:
all_combined_heights = np.zeros(shape)
for angle in angles:
rotated_vector_field = rotate_vector_field_normals(
rotate(vector_field, angle), angle
)
rotated_mask = rotate(mask, angle)
left_gradients, top_gradients = calculate_gradients(
rotated_vector_field, rotated_mask
)
(
left_heights,
right_heights,
top_heights,
bottom_heights,
) = calculate_heights(left_gradients, top_gradients, rotated_mask)
combined_heights = combine_heights(
left_heights, right_heights, top_heights, bottom_heights
)
combined_heights = centered_crop(rotate(combined_heights, -angle), shape)
all_combined_heights += combined_heights / len(angles)
return all_combined_heights
with Pool(processes=thread_count) as pool:
heights = pool.map(
integrate_vector_field_angles,
np.array(
np.array_split(angles, thread_count),
dtype=object,
),
)
pool.close()
pool.join()
isotropic_height = np.zeros(shape)
for height in heights:
isotropic_height += height / thread_count
return isotropic_height
def estimate_height_map(
normal_map: np.ndarray,
mask: Union[np.ndarray, None] = None,
height_divisor: float = 1,
target_iteration_count: int = 250,
thread_count: int = cpu_count(),
raw_values: bool = False,
) -> np.ndarray:
if mask is None:
if normal_map.shape[-1] == 4:
mask = normal_map[:, :, 3] / 255
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
else:
mask = np.ones(normal_map.shape[:2], dtype=np.uint8)
normals = ((normal_map[:, :, :3].astype(np.float64) / 255) - 0.5) * 2
heights = integrate_vector_field(
normals, mask, target_iteration_count, thread_count
)
if raw_values:
return heights
heights /= height_divisor
heights[mask > 0] += 1 / 2
heights[mask == 0] = 1 / 2
heights *= 2**16 - 1
if np.min(heights) < 0 or np.max(heights) > 2**16 - 1:
raise OverflowError("Height values are clipping.")
heights = np.clip(heights, 0, 2**16 - 1)
heights = heights.astype(np.uint16)
return heights