forked from epfLLM/Megatron-LLM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
finetune.py
270 lines (218 loc) · 8.94 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
"""Fine-tune gpt, llama or falcon"""
import datetime as dt
from functools import partial
import torch
from megatron import get_args, get_tokenizer, get_timers, get_counters, print_rank_0
from megatron.training import pretrain
from megatron.core import tensor_parallel
from megatron.core.parallel_state import get_data_parallel_group
from megatron.model import GPTModel, ModelType, LlamaModel, FalconModel, MistralModel
from megatron.utils import get_ltor_masks_and_position_ids, average_losses_across_data_parallel_group
from megatron.data.gpt_dataset import build_train_valid_test_datasets as gpt_build_datasets
from megatron.data.instruction_dataset import instruction_collator
from megatron.data.instruction_dataset import build_train_valid_test_datasets as instruct_build_datasets
from megatron.initialize import initialize_megatron
from megatron.metrics import MetricInput, get_metric
##
# Model provider utilities
##
def model_provider(pre_process: bool = True, post_process: bool = True):
"""Build the model."""
print_rank_0("Building model ...")
args = get_args()
if args.model_name == "gpt":
cls = GPTModel
elif args.model_name == "falcon":
cls = FalconModel
elif args.model_name in {"llama", "llama2", "codellama"}:
cls = partial(LlamaModel, version=1 if args.model_name == "llama" else 2)
elif args.model_name == "mistral":
cls = MistralModel
if args.sliding_window_size != 4096:
print_rank_0("Mistral uses sliding window attention (set sliding_window=4096)")
args.sliding_window_size = 4096
else:
raise KeyError(f"Unkown model {args.model_name}")
if isinstance(args.model_type, ModelType):
model_type = args.model_type
elif args.model_type == "encoder_or_decoder":
model_type = ModelType.encoder_or_decoder
elif args.model_type == "encoder_and_decoder":
model_type = ModelType.encoder_and_decoder
else:
raise KeyError(f"Unsupported model_type {args.model_type}")
model = cls(
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
model_type=model_type
)
return model
##
# Dataset utilities
##
# Heavily inspired by Andreas Köpf: https://github.com/andreaskoepf/epfl-megatron/tree/local_changes/
def get_attention_mask_and_position_ids(data, attention_mask):
"""Build causal attention masks and position id for left to right model.
Builds a (batch, 1, seq, seq)-sized binary causal attention mask from
a (batch, seq)-sized attention mask specifying.
If any value in the input attention_mask is < 0.5, the output
attention mask will mask this position for every token, i.e. out[i, 0, :, j] = True
if in[i, j] < 0.5.
Returns attention_mask, position_ids"""
# Extract batch size and sequence length.
micro_batch_size, seq_length = data.size()
# Attention mask (lower triangular).
att_mask_batch = micro_batch_size
attention_mask = (
attention_mask.unsqueeze(1)
.expand(micro_batch_size, seq_length, seq_length)
.to(data.device)
)
attention_mask = torch.tril(attention_mask).view(
att_mask_batch, 1, seq_length, seq_length
)
# Convert attention mask to binary, True entries will masked
attention_mask = attention_mask < 0.5
# Position ids.
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
position_ids = position_ids.unsqueeze(0).expand_as(data)
return attention_mask, position_ids
def get_batch(data_iterator):
"""Generate a batch"""
args = get_args()
tokenizer = get_tokenizer()
# Items and their type.
datatype = torch.int64
if args.data_type == "gpt":
keys = ["text"]
elif args.data_type == "instruction":
keys = ["text", "attention_mask", "assistant_mask", "pad_mask"]
else:
raise KeyError(f"Unknown dataset type {args.data_type}")
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens = data_b["text"]
labels = tokens[:, 1:].contiguous()
tokens = tokens[:, :-1].contiguous()
# Update tokens counter.
counters = get_counters()
n_tokens = torch.tensor(tokens.numel(), device=tokens.device)
if args.data_parallel_size == 1:
n_tokens = n_tokens.item()
else:
group = get_data_parallel_group()
torch.distributed.all_reduce(
n_tokens, op=torch.distributed.ReduceOp.SUM, group=group
)
n_tokens = n_tokens.item()
counters["tokens"] += n_tokens
if args.data_type == "gpt":
# Get the masks and position ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss
)
return tokens, labels, loss_mask, attention_mask, position_ids
# Instruction dataset.
# Heavily inspired by Andreas Köpf: https://github.com/andreaskoepf/epfl-megatron/tree/local_changes/
attention_mask = data_b["attention_mask"][:, :-1]
assistant_mask = data_b["assistant_mask"][:, 1:].to(tokens.device)
pad_mask = data_b["pad_mask"][:, 1:].to(tokens.device)
loss_mask = torch.full(labels.size(), args.scalar_loss_mask, dtype=torch.float,
device=tokens.device)
loss_mask[assistant_mask == 1] = 1.0
loss_mask[pad_mask == 1] = 0.0
attention_mask, position_ids = get_attention_mask_and_position_ids(
tokens, attention_mask
)
return tokens, labels, loss_mask, attention_mask, position_ids
def data_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
if args.data_type == "gpt":
builder = gpt_build_datasets
elif args.data_type == "instruction":
builder = instruct_build_datasets
print_rank_0("> building train, validation, and test datasets ...")
train_ds, valid_ds, test_ds = builder(
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
seq_length=args.seq_length,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
train_data_prefix=args.train_data_path,
valid_data_prefix=args.valid_data_path,
test_data_prefix=args.test_data_path
)
print_rank_0("> finished creating datasets ...")
return train_ds, valid_ds, test_ds
##
# Loss and forward
##
def loss_func(is_training, batch, outputs):
loss_mask = batch[2]
losses, logits = outputs
losses = losses.float()
loss_mask = loss_mask.view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
out_dict = {"lm loss": averaged_loss[0]}
# Calculate other metrics
if not is_training:
inputs = MetricInput(batch, logits, averaged_loss[0])
args = get_args()
for metric in map(get_metric, args.metrics):
out_dict.update(metric(inputs))
return loss, out_dict
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers("batch-generator", log_level=2).start()
batch = get_batch(data_iterator)
tokens, labels, loss_mask, attention_mask, position_ids = batch
timers("batch-generator").stop()
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels)
return output_tensor, partial(loss_func, model.training, batch)
##
# Main
##
def extra_args(parser):
"""Text generation arguments."""
group = parser.add_argument_group(title='validation set')
group.add_argument("--model_name",
choices={"gpt", "llama", "falcon", "llama2", "codellama", "mistral"},
default="gpt")
group.add_argument("--model_type", choices={"encoder_or_decoder", "encoder_and_decoder"},
default="encoder_or_decoder")
group.add_argument("--data_type", choices={"gpt", "instruction"},
default="gpt")
group.add_argument("--log_learning_rate_to_tensorboard", type=bool, default=True)
group.add_argument("--log_loss_scale_to_tensorboard", type=bool, default=True)
return parser
if __name__ == "__main__":
args_defaults = {"tokenizer_type": "GPT2BPETokenizer"}
initialize_megatron(extra_args, args_defaults)
args = get_args()
if args.data_type == "gpt":
collate_fn = None
else:
collate_fn = instruction_collator
pretrain(args, data_provider, model_provider, ModelType.encoder_or_decoder,
forward_step, collate_fn=collate_fn)
print(f"Done {dt.datetime.now(dt.timezone.utc)}")