forked from epfLLM/Megatron-LLM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathschedules.py
722 lines (608 loc) · 28.9 KB
/
schedules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
from contextlib import contextmanager
import torch
from torch.autograd.variable import Variable
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron import get_args
from megatron import get_num_microbatches
from megatron import p2p_communication
from megatron.core import mpu
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
from megatron.model import ModelType
def get_forward_backward_func():
args = get_args()
if mpu.get_pipeline_model_parallel_world_size() > 1:
if args.virtual_pipeline_model_parallel_size is not None:
forward_backward_func = forward_backward_pipelining_with_interleaving
assert get_num_microbatches() % \
args.pipeline_model_parallel_size == 0, \
'number of microbatches (%d) is not divisible by pipeline-' \
'model-parallel-size (%d) when using interleaved schedule' % (
get_num_microbatches(),
args.pipeline_model_parallel_size,
)
else:
forward_backward_func = forward_backward_pipelining_without_interleaving
else:
forward_backward_func = forward_backward_no_pipelining
return forward_backward_func
def deallocate_output_tensor(out):
'''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
This method should be called right after the output tensor has been
sent to the next pipeline stage. At this point, the output tensor is
only useful for its '.grad_fn' field, and not its '.data'.
'''
if out is None:
return
assert isinstance(out, torch.Tensor), \
"expected Tensor, found %s." % type(out).__name__
assert out._base is None, \
"counter-productive to free a view of another tensor."
out.data = torch.empty(
(1,),
device = out.device,
dtype = out.dtype,
)
def custom_backward(output, grad_output):
'''Directly call C++ autograd engine.
To make the 'deallocate_output_tensor' (above) optimization work, the C++
autograd engine must be called directly, bypassing Pytorch's
torch.autograd.backward. Pytorch's 'backward' checks that the output and
grad have the same shape, while C++'s 'backward' does not.
'''
assert output.numel() == 1, \
"output should be pseudo-'freed' in schedule, to optimize memory"
assert isinstance(output, torch.Tensor), \
"output == '%s'." % type(output).__name__
assert isinstance(grad_output, (torch.Tensor, type(None))), \
"grad_output == '%s'." % type(grad_output).__name__
# Handle scalar output
if grad_output is None:
assert output.numel() == 1, "implicit grad requires scalar output."
grad_output = torch.ones_like(
output,
memory_format = torch.preserve_format,
)
# Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Variable._execution_engine.run_backward(
tensors = (output,),
grad_tensors = (grad_output,),
keep_graph = False,
create_graph = False,
inputs = tuple(),
allow_unreachable=True,
accumulate_grad=True,
)
def forward_step(forward_step_func,
data_iterator,
model,
input_tensor,
forward_data_store,
timers,
collect_non_loss_data=False):
"""Forward step for passed-in model.
If first stage, input tensor is obtained from data_iterator, otherwise
passed-in input_tensor is used.
Returns output tensor."""
args = get_args()
if timers is not None:
timers('forward-compute', log_level=2).start()
unwrapped_model = unwrap_model(
model, (torchDDP, LocalDDP, Float16Module))
unwrap_output_tensor = False
if not isinstance(input_tensor, list):
input_tensor = [input_tensor]
unwrap_output_tensor = True
unwrapped_model.set_input_tensor(input_tensor)
output_tensor, loss_func = forward_step_func(data_iterator, model)
if mpu.is_pipeline_last_stage():
if not collect_non_loss_data:
output_tensor = loss_func(output_tensor)
loss, loss_reduced = output_tensor
output_tensor = loss / get_num_microbatches()
forward_data_store.append(loss_reduced)
else:
data = loss_func(output_tensor, non_loss_data=True)
forward_data_store.append(data)
if timers is not None:
timers('forward-compute').stop()
# If T5 model (or other model with encoder and decoder)
# and in decoder stack, then send encoder_hidden_state
# downstream as well.
if mpu.is_pipeline_stage_after_split() and \
args.model_type == ModelType.encoder_and_decoder:
return [output_tensor, input_tensor[-1]]
if unwrap_output_tensor:
return output_tensor
return [output_tensor]
def backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers):
"""Backward step through passed-in output tensor.
If last stage, output_tensor_grad is None, otherwise gradient of loss
with respect to stage's output tensor.
Returns gradient of loss with respect to input tensor (None if first
stage)."""
# NOTE: This code currently can handle at most one skip connection. It
# needs to be modified slightly to support arbitrary numbers of skip
# connections.
args = get_args()
if timers is not None:
timers('backward-compute', log_level=2).start()
# Retain the grad on the input_tensor.
unwrap_input_tensor_grad = False
if not isinstance(input_tensor, list):
input_tensor = [input_tensor]
unwrap_input_tensor_grad = True
for x in input_tensor:
if x is not None:
x.retain_grad()
if not isinstance(output_tensor, list):
output_tensor = [output_tensor]
if not isinstance(output_tensor_grad, list):
output_tensor_grad = [output_tensor_grad]
# Backward pass.
if output_tensor_grad[0] is None:
output_tensor = optimizer.scale_loss(output_tensor[0])
custom_backward(output_tensor[0], output_tensor_grad[0])
# Collect the grad of the input_tensor.
input_tensor_grad = [None]
if input_tensor is not None:
input_tensor_grad = []
for x in input_tensor:
if x is None:
input_tensor_grad.append(None)
else:
input_tensor_grad.append(x.grad)
# Handle single skip connection if it exists (encoder_hidden_state in
# model with encoder and decoder).
if mpu.get_pipeline_model_parallel_world_size() > 1 and \
mpu.is_pipeline_stage_after_split() and \
args.model_type == ModelType.encoder_and_decoder:
if output_tensor_grad[1] is not None:
input_tensor_grad[-1].add_(output_tensor_grad[1])
if unwrap_input_tensor_grad:
input_tensor_grad = input_tensor_grad[0]
if timers is not None:
timers('backward-compute').stop()
return input_tensor_grad
@contextmanager
def dummy_handler():
try:
yield
finally:
pass
def forward_backward_no_pipelining(forward_step_func,
data_iterator, model,
optimizer,
timers,
forward_only,
collect_non_loss_data=False):
"""Run forward and backward passes with no pipeline parallelism
(no inter-stage communication).
Returns dictionary with losses."""
assert len(model) == 1
model = model[0]
context_handler = dummy_handler
if isinstance(model, torchDDP):
context_handler = model.no_sync
forward_data_store = []
input_tensor, output_tensor_grad = None, None
with context_handler():
for i in range(get_num_microbatches() - 1):
output_tensor = forward_step(forward_step_func, data_iterator,
model, input_tensor, forward_data_store,
timers, collect_non_loss_data)
if not forward_only:
backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers)
# Run computation for last microbatch out of context handler (want to
# synchronize gradients).
output_tensor = forward_step(forward_step_func, data_iterator,
model, input_tensor, forward_data_store,
timers, collect_non_loss_data)
if not forward_only:
backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers)
return forward_data_store
def forward_backward_pipelining_with_interleaving(forward_step_func,
data_iterator, model,
optimizer,
timers,
forward_only,
collect_non_loss_data=False):
"""Run interleaved 1F1B schedule (model split into model chunks), with
communication between pipeline stages as needed.
Returns dictionary with losses if the last stage, empty dict otherwise."""
args = get_args()
input_tensors = [[] for _ in range(len(model))]
output_tensors = [[] for _ in range(len(model))]
forward_data_store = []
if not forward_only:
output_tensor_grads = [[] for _ in range(len(model))]
pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else:
seq_length = args.seq_length
tensor_shape = (seq_length, args.micro_batch_size, args.hidden_size)
# Compute number of warmup and remaining microbatches.
num_model_chunks = len(model)
num_microbatches = get_num_microbatches() * num_model_chunks
all_warmup_microbatches = False
if forward_only:
num_warmup_microbatches = num_microbatches
else:
# Run all forward passes and then all backward passes if number of
# microbatches is just the number of pipeline stages.
# Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
# all workers, followed by more microbatches after depending on
# stage ID (more forward passes for earlier stages, later stages can
# immediately start with 1F1B).
if get_num_microbatches() == pipeline_parallel_size:
num_warmup_microbatches = num_microbatches
all_warmup_microbatches = True
else:
num_warmup_microbatches = \
(pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
num_warmup_microbatches += (
num_model_chunks - 1) * pipeline_parallel_size
num_warmup_microbatches = min(num_warmup_microbatches,
num_microbatches)
num_microbatches_remaining = \
num_microbatches - num_warmup_microbatches
def get_model_chunk_id(microbatch_id, forward):
"""Helper method to get the model chunk ID given the iteration number."""
microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
if not forward:
model_chunk_id = (num_model_chunks - model_chunk_id - 1)
return model_chunk_id
def forward_step_helper(microbatch_id):
"""Helper method to run forward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
forward_step())."""
model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)
# forward step
if mpu.is_pipeline_first_stage():
if len(input_tensors[model_chunk_id]) == \
len(output_tensors[model_chunk_id]):
input_tensors[model_chunk_id].append(None)
input_tensor = input_tensors[model_chunk_id][-1]
output_tensor = forward_step(forward_step_func,
data_iterator[model_chunk_id],
model[model_chunk_id],
input_tensor,
forward_data_store,
timers,
collect_non_loss_data)
output_tensors[model_chunk_id].append(output_tensor)
# if forward-only, no need to save tensors for a backward pass
if forward_only:
input_tensors[model_chunk_id].pop()
output_tensors[model_chunk_id].pop()
return output_tensor
def backward_step_helper(microbatch_id):
"""Helper method to run backward step with model split into chunks
(run set_virtual_pipeline_model_parallel_rank() before calling
backward_step())."""
model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)
if mpu.is_pipeline_last_stage():
if len(output_tensor_grads[model_chunk_id]) == 0:
output_tensor_grads[model_chunk_id].append(None)
input_tensor = input_tensors[model_chunk_id].pop(0)
output_tensor = output_tensors[model_chunk_id].pop(0)
output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
input_tensor_grad = \
backward_step(optimizer,
input_tensor,
output_tensor,
output_tensor_grad,
timers)
return input_tensor_grad
# Run warmup forward passes.
mpu.set_virtual_pipeline_model_parallel_rank(0)
input_tensors[0].append(
p2p_communication.recv_forward(tensor_shape, timers=timers))
for k in range(num_warmup_microbatches):
output_tensor = forward_step_helper(k)
# Determine if tensor should be received from previous stage.
next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
recv_prev = True
if mpu.is_pipeline_first_stage(ignore_virtual=True):
if next_forward_model_chunk_id == 0:
recv_prev = False
if k == (num_microbatches - 1):
recv_prev = False
# Don't send tensor downstream if on last stage.
if mpu.is_pipeline_last_stage():
output_tensor = None
# Send and receive tensors as appropriate (send tensors computed
# in this iteration; receive tensors for next iteration).
if k == (num_warmup_microbatches - 1) and not forward_only and \
not all_warmup_microbatches:
input_tensor_grad = None
recv_next = True
if mpu.is_pipeline_last_stage(ignore_virtual=True):
recv_next = False
input_tensor, output_tensor_grad = \
p2p_communication.send_forward_backward_recv_forward_backward(
output_tensor, input_tensor_grad,
recv_prev=recv_prev, recv_next=recv_next,
tensor_shape=tensor_shape,
timers=timers)
output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
else:
input_tensor = \
p2p_communication.send_forward_recv_forward(
output_tensor, recv_prev=recv_prev,
tensor_shape=tensor_shape,
timers=timers)
input_tensors[next_forward_model_chunk_id].append(input_tensor)
deallocate_output_tensor(output_tensor)
# Run 1F1B in steady state.
for k in range(num_microbatches_remaining):
# Forward pass.
forward_k = k + num_warmup_microbatches
output_tensor = forward_step_helper(forward_k)
# Backward pass.
backward_k = k
input_tensor_grad = backward_step_helper(backward_k)
# Send output_tensor and input_tensor_grad, receive input_tensor
# and output_tensor_grad.
# Determine if current stage has anything to send in either direction,
# otherwise set tensor to None.
forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
if mpu.is_pipeline_last_stage():
output_tensor = None
backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
if mpu.is_pipeline_first_stage():
input_tensor_grad = None
# Determine if peers are sending, and where in data structure to put
# received tensors.
recv_prev = True
if mpu.is_pipeline_first_stage(ignore_virtual=True):
# First stage is ahead of last stage by (pipeline_parallel_size - 1).
next_forward_model_chunk_id = get_model_chunk_id(
forward_k - (pipeline_parallel_size - 1), forward=True)
if next_forward_model_chunk_id == (num_model_chunks - 1):
recv_prev = False
next_forward_model_chunk_id += 1
else:
next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
forward=True)
recv_next = True
if mpu.is_pipeline_last_stage(ignore_virtual=True):
# Last stage is ahead of first stage by (pipeline_parallel_size - 1).
next_backward_model_chunk_id = get_model_chunk_id(
backward_k - (pipeline_parallel_size - 1), forward=False)
if next_backward_model_chunk_id == 0:
recv_next = False
next_backward_model_chunk_id -= 1
else:
next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
forward=False)
# If last iteration, don't receive; we already received one extra
# before the start of the for loop.
if k == (num_microbatches_remaining - 1):
recv_prev = False
# Communicate tensors.
input_tensor, output_tensor_grad = \
p2p_communication.send_forward_backward_recv_forward_backward(
output_tensor, input_tensor_grad,
recv_prev=recv_prev, recv_next=recv_next,
tensor_shape=tensor_shape, timers=timers)
deallocate_output_tensor(output_tensor)
# Put input_tensor and output_tensor_grad in data structures in the
# right location.
if recv_prev:
input_tensors[next_forward_model_chunk_id].append(input_tensor)
if recv_next:
output_tensor_grads[next_backward_model_chunk_id].append(
output_tensor_grad)
# Run cooldown backward passes (flush out pipeline).
if not forward_only:
if all_warmup_microbatches:
output_tensor_grads[num_model_chunks-1].append(
p2p_communication.recv_backward(tensor_shape, timers=timers))
for k in range(num_microbatches_remaining, num_microbatches):
input_tensor_grad = backward_step_helper(k)
next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
recv_next = True
if mpu.is_pipeline_last_stage(ignore_virtual=True):
if next_backward_model_chunk_id == (num_model_chunks - 1):
recv_next = False
if k == (num_microbatches - 1):
recv_next = False
output_tensor_grads[next_backward_model_chunk_id].append(
p2p_communication.send_backward_recv_backward(
input_tensor_grad, recv_next=recv_next,
tensor_shape=tensor_shape,
timers=timers))
return forward_data_store
def get_tensor_shapes(rank, model_type: ModelType):
# Determine right tensor sizes (based on position of rank with respect to split
# rank) and model size.
# Send two tensors if model is T5 and rank is in decoder stage:
# first tensor is decoder (pre-transpose),
# second tensor is encoder (post-transpose).
# If model is T5 and rank is at the boundary:
# send one tensor (post-transpose from encoder).
# Otherwise, send one tensor (pre-transpose).
args = get_args()
tensor_shapes = []
if args.sequence_parallel:
seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
else:
seq_length = args.seq_length
if model_type == ModelType.encoder_and_decoder:
if args.sequence_parallel:
decoder_seq_length = args.decoder_seq_length // mpu.get_tensor_model_parallel_world_size()
else:
decoder_seq_length = args.decoder_seq_length
if mpu.is_pipeline_stage_before_split(rank):
tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
else:
tensor_shapes.append((decoder_seq_length, args.micro_batch_size, args.hidden_size))
tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
else:
tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
return tensor_shapes
def recv_forward(tensor_shapes, timers):
input_tensors = []
for tensor_shape in tensor_shapes:
if tensor_shape is None:
input_tensors.append(None)
else:
input_tensors.append(p2p_communication.recv_forward(tensor_shape,
timers=timers))
return input_tensors
def recv_backward(tensor_shapes, timers):
output_tensor_grads = []
for tensor_shape in tensor_shapes:
if tensor_shape is None:
output_tensor_grads.append(None)
else:
output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
timers=timers))
return output_tensor_grads
def send_forward(output_tensors, tensor_shapes, timers):
if not isinstance(output_tensors, list):
output_tensors = [output_tensors]
for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
if tensor_shape is None:
continue
p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)
def send_backward(input_tensor_grads, tensor_shapes, timers):
if not isinstance(input_tensor_grads, list):
input_tensor_grads = [input_tensor_grads]
for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
if tensor_shape is None:
continue
p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)
def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
if not isinstance(output_tensors, list):
output_tensors = [output_tensors]
output_tensor_grads = []
for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
if tensor_shape is None:
output_tensor_grads.append(None)
continue
output_tensor_grad = p2p_communication.send_forward_recv_backward(
output_tensor, tensor_shape, timers=timers)
output_tensor_grads.append(output_tensor_grad)
return output_tensor_grads
def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
if not isinstance(input_tensor_grads, list):
input_tensor_grads = [input_tensor_grads]
input_tensors = []
for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
if tensor_shape is None:
input_tensors.append(None)
continue
input_tensor = p2p_communication.send_backward_recv_forward(
input_tensor_grad, tensor_shape, timers=timers)
input_tensors.append(input_tensor)
return input_tensors
def forward_backward_pipelining_without_interleaving(forward_step_func,
data_iterator,
model,
optimizer,
timers,
forward_only,
collect_non_loss_data=False):
"""Run non-interleaved 1F1B schedule, with communication between pipeline
stages.
Returns dictionary with losses if the last stage, empty dict otherwise."""
args = get_args()
assert len(model) == 1
model = model[0]
# Compute number of warmup microbatches.
num_microbatches = get_num_microbatches()
num_warmup_microbatches = \
(mpu.get_pipeline_model_parallel_world_size() -
mpu.get_pipeline_model_parallel_rank() - 1)
num_warmup_microbatches = min(
num_warmup_microbatches,
num_microbatches)
num_microbatches_remaining = \
num_microbatches - num_warmup_microbatches
unwrapped_model = unwrap_model(
model, (torchDDP, LocalDDP, Float16Module))
model_type = unwrapped_model.model_type
rank = mpu.get_pipeline_model_parallel_rank()
recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
send_tensor_shapes = get_tensor_shapes(rank, model_type)
# Input, output tensors only need to be saved when doing backward passes
input_tensors = None
output_tensors = None
if not forward_only:
input_tensors = []
output_tensors = []
forward_data_store = []
# Run warmup forward passes.
for i in range(num_warmup_microbatches):
input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, forward_data_store,
timers, collect_non_loss_data)
send_forward(output_tensor, send_tensor_shapes, timers=timers)
if not forward_only:
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
deallocate_output_tensor(output_tensor[0])
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# receive this tensor here.
if num_microbatches_remaining > 0:
input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
# Run 1F1B in steady state.
for i in range(num_microbatches_remaining):
last_iteration = (i == (num_microbatches_remaining - 1))
output_tensor = forward_step(forward_step_func, data_iterator, model,
input_tensor, forward_data_store,
timers, collect_non_loss_data)
if forward_only:
send_forward(output_tensor, send_tensor_shapes, timers=timers)
if not last_iteration:
input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
else:
output_tensor_grad = \
send_forward_recv_backward(output_tensor,
send_tensor_shapes,
timers=timers)
# Add input_tensor and output_tensor to end of list.
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
deallocate_output_tensor(output_tensor[0])
# Pop input_tensor and output_tensor from the start of the list for
# the backward pass.
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
input_tensor_grad = \
backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers)
if last_iteration:
input_tensor = None
send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
else:
input_tensor = \
send_backward_recv_forward(
input_tensor_grad, recv_tensor_shapes, timers=timers)
# Run cooldown backward passes.
if not forward_only:
for i in range(num_warmup_microbatches):
input_tensor = input_tensors.pop(0)
output_tensor = output_tensors.pop(0)
output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
input_tensor_grad = \
backward_step(optimizer, input_tensor, output_tensor,
output_tensor_grad, timers)
send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
return forward_data_store