{cell} | ') + for cell,struct,layout,preds, tt in zip(row,struc_row,layout_row,preds_row, tt_row): + html.append(f'{cell} | ') html.append("
Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | |
---|---|---|---|---|---|---|
0 | \n", + "39.35% | \n", + "24.18% | \n", + "29.95% | \n", + "24.18% | \n", + "22.13% | \n", + "21.34% | \n", + "
1 | \n", + "67.83% | \n", + "47.35% | \n", + "55.77% | \n", + "47.94% | \n", + "46.50% | \n", + "43.62% | \n", + "
2 | \n", + "70.79% | \n", + "57.27% | \n", + "63.32% | \n", + "60.78% | \n", + "62.72% | \n", + "59.60% | \n", + "
3 | \n", + "70.28% | \n", + "48.06% | \n", + "57.08% | \n", + "53.64% | \n", + "52.79% | \n", + "50.02% | \n", + "
4 | \n", + "68.48% | \n", + "58.09% | \n", + "62.86% | \n", + "58.22% | \n", + "60.53% | \n", + "56.38% | \n", + "
Rank | \n", + "Team | \n", + "Single Model | \n", + "Final Score | \n", + "
1 | \n", + "CASIA_IVA_JD | \n", + "✗ | \n", + "0.5547 | \n", + "
2 | \n", + "WinterIsComing | \n", + "✗ | \n", + "0.5544 | \n", + "
- | \n", + "PSPNet [38] | \n", + "ResNet-269 | \n", + "0.5538 | \n", + "
- | \n", + "EncNet [36] | \n", + "ResNet-101 | \n", + "0.5567 | \n", + "
- | \n", + "Ours | \n", + "ResNet-101 | \n", + "0.5584 | \n", + "
Rank | \n", + "Team | \n", + "Single Model | \n", + "Final Score | \n", + "
1 | \n", + "CASIA_IVA_JD | \n", + "✗ | \n", + "0.5547 | \n", + "
2 | \n", + "WinterIsComing | \n", + "✗ | \n", + "0.5544 | \n", + "
- | \n", + "PSPNet [38] | \n", + "ResNet-269 | \n", + "0.5538 | \n", + "
- | \n", + "EncNet [36] | \n", + "ResNet-101 | \n", + "0.5567 | \n", + "
- | \n", + "Ours | \n", + "ResNet-101 | \n", + "0.5584 | \n", + "
Tag | \n", + "description | \n", + "
model-best | \n", + "the best performing model introduced in the paper | \n", + "
model-paper | \n", + "model introduced in the paper | \n", + "
model-ensemble | \n", + "ensemble of models introduced in the paper | \n", + "
model-competing | \n", + "model from another paper used for comparison | \n", + "
dataset-task | \n", + "Task | \n", + "
dataset | \n", + "Dataset | \n", + "
dataset-sub | \n", + "Subdataset | \n", + "
dataset-metric | \n", + "Metric | \n", + "
model-params | \n", + "Params, f.e., number of layers or inference time | \n", + "
table-meta | \n", + "Cell describing other header cells | \n", + "
trash | \n", + "Parsing erros | \n", + "
\n", + " | task | \n", + "dataset | \n", + "metric | \n", + "format | \n", + "model | \n", + "raw_value | \n", + "
---|---|---|---|---|---|---|
cell_ext_id | \n", + "\n", + " | \n", + " | \n", + " | \n", + " | \n", + " | \n", + " |
table_05.csv/5.3 | \n", + "Semantic Segmentation | \n", + "ADE20K test | \n", + "Test Score | \n", + "NaN | \n", + "EncNet + JPU | \n", + "0.5584 | \n", + "
Model | \n", - "d | \n", - "|θ|M | \n", - "Train | \n", - "Test | \n", - "
Classifier with handcrafted features [12] | \n", - "- | \n", - "- | \n", - "99.7 | \n", - "78.2 | \n", - "
LSTM encoders [12] | \n", - "300 | \n", - "3.0M | \n", - "83.9 | \n", - "80.6 | \n", - "
Dependency Tree CNN encoders [13] | \n", - "300 | \n", - "3.5M | \n", - "83.3 | \n", - "82.1 | \n", - "
SPINN-PI encoders [14] | \n", - "300 | \n", - "3.7M | \n", - "89.2 | \n", - "83.2 | \n", - "
NSE | \n", - "300 | \n", - "3.4M | \n", - "86.2 | \n", - "84.6 | \n", - "
MMA-NSE | \n", - "300 | \n", - "6.3M | \n", - "87.1 | \n", - "84.8 | \n", - "
LSTM attention [15] | \n", - "100 | \n", - "242K | \n", - "85.4 | \n", - "82.3 | \n", - "
LSTM word-by-word attention [15] | \n", - "100 | \n", - "252K | \n", - "85.3 | \n", - "83.5 | \n", - "
MMA-NSE attention | \n", - "300 | \n", - "6.5M | \n", - "86.9 | \n", - "85.4 | \n", - "
mLSTM word-by-word attention [16] | \n", - "300 | \n", - "1.9M | \n", - "92.0 | \n", - "86.1 | \n", - "
LSTMN with deep attention fusion [17] | \n", - "450 | \n", - "3.4M | \n", - "89.5 | \n", - "86.3 | \n", - "
Decomposable attention model [18] | \n", - "200 | \n", - "582K | \n", - "90.5 | \n", - "86.8 | \n", - "
Full tree matching NTI-SLSTM-LSTM global attention [19] | \n", - "300 | \n", - "3.2M | \n", - "88.5 | \n", - "87.3 | \n", - "
Tag | \n", - "description | \n", - "
model-best | \n", - "model that has results that author most likely would like to have exposed | \n", - "
model-paper | \n", - "an example of a generic model, (like LSTM) | \n", - "
model-competing | \n", - "model from another paper used for comparison | \n", - "
dataset-task | \n", - "Task | \n", - "
dataset | \n", - "Dataset | \n", - "
dataset-sub | \n", - "Subdataset | \n", - "
dataset-metric | \n", - "Metric | \n", - "
model-params | \n", - "Params, f.e., number of layers or inference time | \n", - "
table-meta | \n", - "Cell describing other header cells | \n", - "
trash | \n", - "Parsing erros | \n", - "
\n", + " | dataset | \n", + "metric | \n", + "task | \n", + "model | \n", + "score | \n", + "
---|---|---|---|---|---|
0 | \n", + "PASCAL Context | \n", + "mIoU | \n", + "Semantic Segmentation | \n", + "EncNet+JPU (ours) | \n", + "53.10 | \n", + "
1 | \n", + "ADE20K | \n", + "Validation mIoU | \n", + "Semantic Segmentation | \n", + "Ours | \n", + "80.99 | \n", + "
Method | \n", + "Backbone | \n", + "mIoU% | \n", + "
FCN-8s [22] | \n", + "\n", + " | 37.8 | \n", + "
CRF-RNN [39] | \n", + "\n", + " | 39.3 | \n", + "
ParseNet [21] | \n", + "\n", + " | 40.4 | \n", + "
BoxSup [10] | \n", + "\n", + " | 40.5 | \n", + "
HO_CRF [2] | \n", + "\n", + " | 41.3 | \n", + "
Piecewise [19] | \n", + "\n", + " | 43.3 | \n", + "
VeryDeep [32] | \n", + "\n", + " | 44.5 | \n", + "
DeepLabV2 [5] | \n", + "ResNet-101 + COCO | \n", + "45.7 | \n", + "
RefineNet [18] | \n", + "ResNet-152 | \n", + "47.3 | \n", + "
EncNet [36] | \n", + "ResNet-101 | \n", + "51.7 | \n", + "
DUpsampling [29] | \n", + "Xception-71 | \n", + "52.5 | \n", + "
EncNet+JPU (ours) | \n", + "ResNet-50 | \n", + "51.2 | \n", + "
EncNet+JPU (ours) | \n", + "ResNet-101 | \n", + "53.1 | \n", + "
epoch | \n", + "train_loss | \n", + "valid_loss | \n", + "accuracy | \n", + "perplexity | \n", + "time | \n", + "
---|---|---|---|---|---|
0 | \n", + "3.019458 | \n", + "3.264306 | \n", + "0.392344 | \n", + "26.161938 | \n", + "1:54:36 | \n", + "
1 | \n", + "3.056603 | \n", + "3.422664 | \n", + "0.376507 | \n", + "30.651068 | \n", + "1:53:43 | \n", + "
2 | \n", + "3.141768 | \n", + "3.550231 | \n", + "0.362796 | \n", + "34.821327 | \n", + "1:53:26 | \n", + "
3 | \n", + "3.090492 | \n", + "3.525985 | \n", + "0.366870 | \n", + "33.987396 | \n", + "1:53:16 | \n", + "
4 | \n", + "3.107407 | \n", + "3.491773 | \n", + "0.370532 | \n", + "32.844139 | \n", + "1:54:11 | \n", + "
5 | \n", + "3.059378 | \n", + "3.445549 | \n", + "0.375365 | \n", + "31.360525 | \n", + "1:54:10 | \n", + "
6 | \n", + "3.030591 | \n", + "3.368207 | \n", + "0.382388 | \n", + "29.026358 | \n", + "1:53:57 | \n", + "
7 | \n", + "2.965446 | \n", + "3.278792 | \n", + "0.391360 | \n", + "26.543692 | \n", + "1:53:37 | \n", + "
8 | \n", + "2.919746 | \n", + "3.163137 | \n", + "0.404793 | \n", + "23.644709 | \n", + "1:53:10 | \n", + "
9 | \n", + "2.812866 | \n", + "3.019272 | \n", + "0.421912 | \n", + "20.476440 | \n", + "1:53:43 | \n", + "
10 | \n", + "2.800652 | \n", + "2.874423 | \n", + "0.440786 | \n", + "17.715170 | \n", + "1:54:00 | \n", + "
11 | \n", + "2.870245 | \n", + "2.789970 | \n", + "0.453570 | \n", + "16.280558 | \n", + "1:53:58 | \n", + "
\n", + " | valid_accuracy | \n", + "valid_bin_accuracy | \n", + "test_accuracy | \n", + "test_bin_accuracy | \n", + "
---|---|---|---|---|
0 | \n", + "0.572368 | \n", + "0.763158 | \n", + "0.703226 | \n", + "0.819355 | \n", + "
1 | \n", + "0.625000 | \n", + "0.809211 | \n", + "0.748387 | \n", + "0.858065 | \n", + "
2 | \n", + "0.578947 | \n", + "0.750000 | \n", + "0.716129 | \n", + "0.825806 | \n", + "
3 | \n", + "0.592105 | \n", + "0.769737 | \n", + "0.748387 | \n", + "0.858065 | \n", + "
4 | \n", + "0.565789 | \n", + "0.703947 | \n", + "0.722581 | \n", + "0.858065 | \n", + "