-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.py
317 lines (215 loc) · 10.5 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Mengimpor library yang diperlukan
import pandas as pd
from sklearn.model_selection import train_test_split
import streamlit as st
from joblib import load,dump
from sklearn.svm import SVC,SVR
from sklearn.metrics import accuracy_score
from sklearn.ensemble import GradientBoostingRegressor,RandomForestRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
import time
def train():
df = pd.read_csv('Diabetes.csv')
def remove_outliers(df):
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return df[(df >= lower_bound) & (df <= upper_bound)].dropna()
numerical_columns = df.select_dtypes(include=['number']).columns
for col in numerical_columns:
df[col] = remove_outliers(df[col])
df = df.dropna()
scaling_factor = 100
scaled = (df['DiabetesPedigreeFunction'] * scaling_factor)
df.loc[:, 'DiabetesPedigreeFunction'] = scaled
#
scaler = StandardScaler()
# Memilih fitur yang akan digunakan untuk melatih model
fitur = ['Kehamilan', 'Glukosa', 'Tekanan Darah', 'Insulin', 'BMI', 'DiabetesPedigreeFunction','Umur']
# Membuat DataFrame untuk data train (Ketebalan Kulit tidak null dan bukan nol)
data_train = df[(df['Ketebalan Kulit'].notna()) & (df['Ketebalan Kulit'] != 0)]
# Membuat DataFrame untuk data test (Ketebalan Kulit null atau nol)
data_test = df[(df['Ketebalan Kulit'].isna()) | (df['Ketebalan Kulit'] == 0)]
# Memisahkan fitur dan target
X_train = data_train[fitur]
y_train = data_train['Ketebalan Kulit']
X_test = data_test[fitur]
# Scale fitur
# List Algoritma Regresi
models = [
RandomForestRegressor(max_features=5),
GradientBoostingRegressor(),
SVR(kernel="poly",degree=1),
KNeighborsRegressor()
]
cv_scores = {}
for model in models:
scores = cross_val_score(model, X_train, y_train, cv=10, scoring='neg_mean_squared_error')
mean_mae = -scores.mean()
cv_scores[model.__class__.__name__] = mean_mae
sorted_cv_scores = {k: v for k, v in sorted(cv_scores.items(), key=lambda item: item[1])}
# Memilih MAE terendah
best_model_name = list(sorted_cv_scores.keys())[0]
best_model = [model for model in models if model.__class__.__name__ == best_model_name][0]
# Train menggunakan skor terendah ( terbaik )
best_model.fit(X_train, y_train)
predicted_ketebalan_kulit = best_model.predict(X_test)
predicted_ketebalan_kulit = predicted_ketebalan_kulit.round().astype(int)
df.loc[(df['Ketebalan Kulit'] == 0.0), 'Ketebalan Kulit'] = predicted_ketebalan_kulit
# Mengganti nilai 0 pada kolom Insulin dengan prediksi machnine learning terbaik
# Memilih fitur yang akan digunakan untuk melatih model
fitur = ['Kehamilan', 'Glukosa', 'Tekanan Darah', 'Ketebalan Kulit', 'BMI', 'DiabetesPedigreeFunction','Umur']
# Membuat DataFrame untuk data train (Insulin tidak null dan bukan nol)
data_train = df[(df['Insulin'].notna()) & (df['Insulin'] != 0)]
# Membuat DataFrame untuk data test (Insulin null atau nol)
data_test = df[(df['Insulin'].isna()) | (df['Insulin'] == 0)]
# Memisahkan fitur dan target
X_train = data_train[fitur]
y_train = data_train['Insulin']
X_test = data_test[fitur]
# Modeling
models = [
RandomForestRegressor(max_features=5),
GradientBoostingRegressor(),
SVR(kernel="linear"),
KNeighborsRegressor()
]
cv_scores = {}
for model in models:
scores = cross_val_score(model, X_train, y_train, cv=10, scoring='neg_mean_squared_error')
mean_mae = -scores.mean()
cv_scores[model.__class__.__name__] = mean_mae
sorted_cv_scores = {k: v for k, v in sorted(cv_scores.items(), key=lambda item: item[1])}
# Memilih MAE terendah
best_model_name = list(sorted_cv_scores.keys())[0]
best_model = [model for model in models if model.__class__.__name__ == best_model_name][0]
# Train menggunakan skor terendah ( terbaik )
best_model.fit(X_train, y_train)
predicted_insulin = best_model.predict(X_test)
predicted_insulin = predicted_insulin.round().astype(int)
df.loc[(df['Insulin'] == 0.0), 'Insulin'] = predicted_insulin
# Drop kolom yang tidak diperlukan dari DataFrame
features = df.drop(columns=['Hasil'])
# Pisahkan fitur dan label
X = features
y = df['Hasil']
# Bagi data menjadi set pelatihan dan set pengujian
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Inisialisasi objek StandardScaler
scaler = StandardScaler()
# Fit scaler ke data pelatihan dan transformasikan data pelatihan
X_train_scaled = scaler.fit_transform(X_train)
# Transformasikan data pengujian menggunakan scaler yang sama
X_test_scaled = scaler.transform(X_test)
# Inisialisasi model SVM
model = SVC(kernel='poly',degree=1,random_state=42)
# Latih model dengan set pelatihan yang telah di-scale
model.fit(X_train_scaled, y_train)
# Lakukan prediksi pada set pengujian yang telah di-scale
predictions = model.predict(X_test_scaled)
# Hitung akurasi model
accuracy = accuracy_score(y_test, predictions)
#save model, accuracy, and scaler into one object then save it to disk
trained_model = {'model':model,'accuracy':accuracy,'scaler':scaler}
dump(trained_model,'trained_model.joblib')
return accuracy
is_trained = False
#try to load the model from disk if it exist then set is_trained to True
try:
trained_model = load('trained_model.joblib')
is_trained = True
except:
is_trained = False
if(is_trained):
trained_model = load('trained_model.joblib')
model = trained_model['model']
accuracy = trained_model['accuracy']
scaler = trained_model['scaler']
st.title('Pendeteksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine')
with st.container(border=True):
st.markdown(f'''
Aplikasi ini mampu memprediksi apakah seseorang menderita penyakit diabetes atau tidak berdasarkan data yang diinputkan dengan tingkat akurasi sebesar :green[{accuracy*100}%]
''')
#check query params for password and get from config yoml
if 'button_status' not in st.session_state:
st.session_state.button_status = 'no_button'
if 'password' in st.query_params and 'training' not in st.session_state.button_status:
if(st.query_params['password'] != st.secrets['retrain_pw']):
st.session_state.button_status = 'no_button'
else:
st.session_state.button_status = 'button_active'
# Button to start retraining the model
if(st.session_state.button_status == 'button_active'):
if st.button('Re-Train Model'):
st.session_state.button_status = 'training'
st.rerun()
elif(st.session_state.button_status == 'training'):
with st.spinner('Proses melatih model...'):
accuracy = train()
st.session_state.retrain_accuracy = accuracy
st.session_state.button_status = 'button_active'
st.rerun()
if('retrain_accuracy' in st.session_state):
st.markdown('''Model behasil dilatih dengan akurasi sebesar :green[{}]'''.format(st.session_state.retrain_accuracy*100))
#remove retrain_accuracy from session state
del st.session_state['retrain_accuracy']
time.sleep(5)
st.rerun()
# Display UI elements immediately
st.markdown('''## Input Data Pasien''')
st.write('Silahkan masukkan data pasien yang ingin diprediksi pada kolom di bawah ini')
#Kehamilan,Glukosa,Tekanan Darah,Ketebalan Kulit,Insulin,BMI,DiabetesPedigreeFunction,Umur input
kehamilan = st.number_input('Kehamilan', min_value=0, max_value=17, value=0)
glukosa = st.number_input('Glukosa', min_value=0, max_value=200, value=0)
tekanan_darah = st.number_input('Tekanan Darah', min_value=0, max_value=200, value=0)
ketebalan_kulit = st.number_input('Ketebalan Kulit', min_value=0, max_value=200, value=0)
insulin = st.number_input('Insulin', min_value=0, value=0)
bmi = st.number_input('BMI', min_value=0.0, value=0.0)
dpf = st.number_input('DiabetesPedigreeFunction', min_value=0.000, max_value=3.000, value=0.000, format="%.3f")
umur = st.number_input('Umur', min_value=21, max_value=100, value=21)
#button "Prediksi"
if st.button('Prediksi'):
# Membuat DataFrame dari data pasien
data = {'Kehamilan': [kehamilan],
'Glukosa': [glukosa],
'Tekanan Darah': [tekanan_darah],
'Ketebalan Kulit': [ketebalan_kulit],
'Insulin': [insulin],
'BMI': [bmi],
'DiabetesPedigreeFunction': [dpf],
'Umur': [umur]}
df_input = pd.DataFrame(data)
# Transformasi data pasien menggunakan StandardScaler yang sama
df_input_scaled = scaler.transform(df_input)
# Prediksi apakah pasien menderita diabetes atau tidak warna merah = menderita diabetes, warna hijau = tidak menderita diabetes pada tulisan hasil prediksi
prediction = model.predict(df_input_scaled)
if prediction[0] == 1:
st.markdown('''
Pasien :red[MENDERITA] diabetes
''')
else:
st.markdown('''
Pasien :green[TIDAK MENDERITA] diabetes
''')
else:
st.title('Pendeteksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine')
st.write('Belum ada model yang dilatih')
if 'button_status' not in st.session_state:
st.session_state.button_status = 'button_active'
# Button to start retraining the model
if(st.session_state.button_status == 'button_active'):
if st.button('Train Model'):
st.session_state.button_status = 'training'
st.rerun()
elif(st.session_state.button_status == 'training'):
with st.spinner('Proses melatih model...'):
accuracy = train()
st.session_state.retrain_accuracy = accuracy
st.session_state.button_status = 'no_button'
st.markdown('''Model behasil dilatih dengan akurasi sebesar :green[{}]%'''.format(accuracy*100))
time.sleep(5)
st.rerun()