-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
45 lines (39 loc) · 1.51 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright © 2023 Apple Inc.
import argparse
from itertools import starmap
import numpy as np
import torch
import glob
def weight_mapping(state, model_size):
# there's no _orig_mod.transformer
state = {k.replace("_orig_mod.transformer.", ""): v for k, v in state.items()}
# transformer block mapping
layer_count = 24 if model_size == "large" else 12
for i in range(layer_count):
prefix = f"h.{i}."
state = {k.replace(prefix, f"layers.{i}."): v for k, v in state.items()}
# lm_head
state = {k.replace("_orig_mod.", ""): v for k, v in state.items()}
return state
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Convert Bark weights to MLX")
parser.add_argument("--torch_weights_dir", default="weights/")
parser.add_argument("--model", default="small", choices=["large", "small"])
args = parser.parse_args()
if args.model == "large":
file_pattern = f"{args.torch_weights_dir}*_2.pt"
weights = glob.glob(file_pattern)
else:
all_files = glob.glob(f"{args.torch_weights_dir}*.pt")
weights = [file for file in all_files if "_2" not in file]
for w in weights:
state = torch.load(w, map_location=torch.device("cpu"))
state = weight_mapping(state["model"], args.model)
print(state)
np.savez(
w.replace(".pt", ".npz"),
**{
k: v.numpy()
for k, v in starmap(lambda k, v: (k, v.squeeze().cpu()), state.items())
},
)