forked from Eddy-M-K/MATLAB-LiDAR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Parallel_Rotated_Precise_Moving_Golf_Ball_Intersection.m
67 lines (59 loc) · 3.6 KB
/
Parallel_Rotated_Precise_Moving_Golf_Ball_Intersection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
function [Export] = Parallel_Rotated_Precise_Moving_Golf_Ball_Intersection(Precise_Azimuth, sphere_moving_x, sphere_moving_y, sphere_moving_z, r, Precise_Azimuth_Resolution, Radius_Start, Radius_End, LiDAR_x, LiDAR_y, LiDAR_z, Export)
fprintf("Rotated Precise Moving Golf Ball Intersection (Parallel to Golf Ball Flight):\n");
position = 1;
while position <= length(sphere_moving_x)
for Vertical_Angle = 15:-2:-15
P_Start = [Radius_Start*cosd(Precise_Azimuth) + LiDAR_x, ...
LiDAR_y, ...
Radius_Start*sind(Precise_Azimuth) + LiDAR_z];
P_End = [Radius_End*cosd(Precise_Azimuth)*cosd(Vertical_Angle) + LiDAR_x, ...
Radius_End*sind(Vertical_Angle) + LiDAR_y, ...
Radius_End*sind(Precise_Azimuth)*cosd(Vertical_Angle) + LiDAR_z];
slope = P_End - P_Start;
A = slope(1)^2 + slope(2)^2 + slope(3)^2;
B = 2*(slope(1)*(P_Start(1) - sphere_moving_x(position)) + slope(2)*(P_Start(2) - sphere_moving_y(position)) + slope(3)*(P_Start(3) - sphere_moving_z(position)));
C = (P_Start(1) - sphere_moving_x(position))^2 + (P_Start(2) - sphere_moving_y(position))^2 + (P_Start(3) - sphere_moving_z(position))^2 - r^2;
Delta = B^2 - 4*A*C;
if (Delta == 0)
s = -B/2*A;
p_FL = [P_Start(1) + s*slope(1), P_Start(2) + s*slope(2), P_Start(3) + s*slope(3)];
plot3([P_Start(1) p_FL(1)], [P_Start(2) p_FL(2)], [P_Start(3) p_FL(3)]);
fprintf("Point of Intersection = [%13.4f, %13.4f, %13.4f] | Azimuth = %10.4f | Vertical Angle = %3.0f\n", ...
P_FL(1), P_FL(2), P_FL(3), Precise_Azimuth, Vertical_Angle);
elseif (Delta > 0)
syms d;
s = solve((P_Start(1) + d*slope(1) - sphere_moving_x(position))^2+(P_Start(2) + d*slope(2) - sphere_moving_y(position))^2+(P_Start(3) + d*slope(3) - sphere_moving_z(position))^2 == r^2, d);
P1 = [P_Start(1) + s(1)*slope(1), P_Start(2) + s(1)*slope(2), P_Start(3) + s(1)*slope(3)];
P2 = [P_Start(1) + s(2)*slope(1), P_Start(2) + s(2)*slope(2), P_Start(3) + s(2)*slope(3)];
if ((s(1) < 0) & (s(2) < 0))
continue
elseif (s(1) < 0)
P_FL = P2
elseif (s(2) < 0)
P_FL = P1
elseif (norm(P1-P_Start) < norm(P2-P_Start))
P_FL = P1;
else
P_FL = P2;
end
Plot_Print_H(P_Start, P_FL, Precise_Azimuth, Vertical_Angle, sphere_moving_x(position), sphere_moving_y(position), sphere_moving_z(position))
Sphere_H(sphere_moving_x(position), sphere_moving_y(position), sphere_moving_z(position), r)
Data = {double(P_FL(1)), double(P_FL(2)), double(P_FL(3)), Precise_Azimuth, Vertical_Angle, sphere_moving_x(position), sphere_moving_y(position), sphere_moving_z(position)};
Export = [Export; Data];
end
Precise_Azimuth = Precise_Azimuth + Precise_Azimuth_Resolution;
position = position + 1;
if position > length(sphere_moving_x)
break
end
end
Precise_Azimuth = Precise_Azimuth + 8*Precise_Azimuth_Resolution;
position = position + 8;
end
title('Parallel Rotated Precise Moving Golf Ball Intersection')
xlabel('X')
ylabel('Y')
zlabel('Z')
daspect([1 1 1])
fprintf("\n");
end