- [필수] 코드 수정후 KITTI외 시각화 기능으로 추가 https://github.com/navoshta/KITTI-Dataset/blob/master/kitti-dataset.ipynb
#%matplotlib inline
X = data
# Plot result
import matplotlib.pyplot as plt
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=1)# 14
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=1)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
- 설치가 쉽지만, 느리고 3D를 충분히 표현하지 못한다. [KITTI Data Demo]
https://github.com/navoshta/KITTI-Dataset/blob/master/kitti-dataset.ipynb
from mpl_toolkits.mplot3d import Axes3D
f2 = plt.figure()
ax2 = f2.add_subplot(111, projection='3d')
# Plot every 100th point so things don't get too bogged down
velo_range = range(0, third_velo.shape[0], 100)
ax2.scatter(third_velo[velo_range, 0],
third_velo[velo_range, 1],
third_velo[velo_range, 2],
c=third_velo[velo_range, 3],
cmap='gray')
ax2.set_title('Third Velodyne scan (subsampled)')
plt.show()
In order to prevent matplotlib from crashing your computer, it is recomended to only view a subset of the point cloud data.
For instance, if you are visualizing LIDAR data, then you may only want to view one in every 25-100 points. Below is some sample code to get you started.
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
skip = 100 # Skip every n points
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
point_range = range(0, points.shape[0], skip) # skip points to prevent crash
ax.scatter(points[point_range, 0], # x
points[point_range, 1], # y
points[point_range, 2], # z
c=points[point_range, 2], # height data for color
cmap='spectral',
marker="x")
ax.axis('scaled') # {equal, scaled}
plt.show()
Code Download : range_image_visualization.cpp, CMakeLists.txt
mkdir range_image_visualization; cd range_image_visualization
vi range_image_visualization.cpp
vi CMakeLists.txt
mkdir build;cd build
cmake ..
make
# Test
wget https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd
./range_image_visualization table_scene_lms400.pcd
Simple Version : Cloud Viewer